[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
An Entity of Type: person, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In set theory, a branch of mathematics, the minimal model is the minimal standard model of ZFC.The minimal model was introduced by Shepherdson and rediscovered by . The existence of a minimal model cannot be proved in ZFC, even assuming that ZFC is consistent, but follows from the existence of a standard model as follows. If there is a set W in the von Neumann universe V that is a standard model of ZF, and the ordinal κ is the set of ordinals that occur in W, then Lκ is the class of constructible sets of W. If there is a set that is a standard model of ZF, then the smallest such set is such a Lκ. This set is called the minimal model of ZFC, and also satisfies the axiom of constructibility V=L. The downward Löwenheim–Skolem theorem implies that the minimal model (if it exists as a se

Property Value
dbo:abstract
  • In set theory, a branch of mathematics, the minimal model is the minimal standard model of ZFC.The minimal model was introduced by Shepherdson and rediscovered by . The existence of a minimal model cannot be proved in ZFC, even assuming that ZFC is consistent, but follows from the existence of a standard model as follows. If there is a set W in the von Neumann universe V that is a standard model of ZF, and the ordinal κ is the set of ordinals that occur in W, then Lκ is the class of constructible sets of W. If there is a set that is a standard model of ZF, then the smallest such set is such a Lκ. This set is called the minimal model of ZFC, and also satisfies the axiom of constructibility V=L. The downward Löwenheim–Skolem theorem implies that the minimal model (if it exists as a set) is a countable set. More precisely, every element s of the minimal model can be named; in other words there is a first-order sentence φ(x) such that s is the unique element of the minimal model for which φ(s) is true. gave another construction of the minimal model as the strongly constructible sets, using a modified form of Gödel's constructible universe. Of course, any consistent theory must have a model, so even within the minimal model of set theory there are sets that are models of ZFC (assuming ZFC is consistent). However, these set models are non-standard. In particular, they do not use the normal membership relation and they are not well-founded. If there is no standard model then the minimal model cannot exist as a set. However in this case the class of all constructible sets plays the same role as the minimal model and has similar properties (though it is now a proper class rather than a countable set). The minimal model of set theory has no inner models other than itself. In particular it is not possible to use the method of inner models to prove that any given statement true in the minimal model (such as the continuum hypothesis) is not provable in ZFC. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 18374778 (xsd:integer)
dbo:wikiPageLength
  • 3513 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 995952604 (xsd:integer)
dbo:wikiPageWikiLink
dbp:last
  • Shepherdson (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1951 (xsd:integer)
  • 1952 (xsd:integer)
  • 1953 (xsd:integer)
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In set theory, a branch of mathematics, the minimal model is the minimal standard model of ZFC.The minimal model was introduced by Shepherdson and rediscovered by . The existence of a minimal model cannot be proved in ZFC, even assuming that ZFC is consistent, but follows from the existence of a standard model as follows. If there is a set W in the von Neumann universe V that is a standard model of ZF, and the ordinal κ is the set of ordinals that occur in W, then Lκ is the class of constructible sets of W. If there is a set that is a standard model of ZF, then the smallest such set is such a Lκ. This set is called the minimal model of ZFC, and also satisfies the axiom of constructibility V=L. The downward Löwenheim–Skolem theorem implies that the minimal model (if it exists as a se (en)
rdfs:label
  • Minimal model (set theory) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License