[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Metaepistemology is the branch of epistemology and metaphilosophy that studies the underlying assumptions made in debates in epistemology, including those concerning the existence and authority of epistemic facts and reasons, the nature and aim of epistemology, and the methodology of epistemology.

Property Value
dbo:abstract
  • Metaepistemology is the branch of epistemology and metaphilosophy that studies the underlying assumptions made in debates in epistemology, including those concerning the existence and authority of epistemic facts and reasons, the nature and aim of epistemology, and the methodology of epistemology. Perspectives in methodological debates include traditional epistemology which argues for the use of intuitions and for the autonomy of epistemology from science, experimental philosophy which argues against intuitions and for the use of empirical studies in epistemology, pragmatism which argues for the reconstruction of epistemic concepts to achieve practical goals, naturalism which argues that epistemology should be empirical and scientifically-informed, and feminism which criticises androcentric bias in epistemology and argues for the use of feminist method. (en)
  • 元知识论是元哲学的主题和知識論的研究方法。它的目的為构建我们知识的知識以及了解本身的知识。 在中,有兩種基本研究元知识论的方法:传统的规范知识论和自然知识论。 传统的知识论一直关注正当性。根据传统的知识模型,命题p是当且仅当 : 1. * X相信p, 2. * p是真的, 3. * X有理由相信p 自笛卡尔时代以来,笛卡尔一直试图建立获取真实信念的标准,并確定我们有理由相信的信念。因此,知识论的主要项目就是阐明这种知识概念中的辩证条件,以形成合理的真实信念。 自然知识论始于20世纪的威拉德·范奥曼·蒯因。他的主張被称为“替代自然主义”。這套理論是要从知识论中删除一切规范性描述。他希望把知识论与经验心理学的理論结合,以使每一个知识论的陈述都被經驗心理陈述所取代。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3193700 (xsd:integer)
dbo:wikiPageLength
  • 33019 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1109427401 (xsd:integer)
dbo:wikiPageWikiLink
dbp:1a
  • Whiting (en)
  • McHugh (en)
  • Way (en)
  • Weinberg (en)
  • Gerken (en)
  • Yu (en)
  • Kuenzle (en)
  • Bunnin (en)
  • Kyriacou IEP (en)
dbp:1loc
  • §1 (en)
  • §2 (en)
  • §3 (en)
  • §4 (en)
dbp:1p
  • 26 (xsd:integer)
dbp:1pp
  • 15 (xsd:integer)
  • 67 (xsd:integer)
  • 7884 (xsd:integer)
dbp:1y
  • 2006 (xsd:integer)
  • 2009 (xsd:integer)
  • 2016 (xsd:integer)
  • 2017 (xsd:integer)
  • 2018 (xsd:integer)
dbp:2a
  • Koch (en)
  • Whiting (en)
  • McKenna (en)
  • Horvath (en)
  • McHugh (en)
  • Way (en)
  • Gerken (en)
  • Kyriacou (en)
  • Kyriacou IEP (en)
  • Rysiew (en)
dbp:2loc
  • §1 (en)
  • §2 (en)
  • §4 (en)
  • §§1-2 (en)
dbp:2p
  • 1 (xsd:integer)
  • 3 (xsd:integer)
dbp:2pp
  • 1 (xsd:integer)
  • 4 (xsd:integer)
  • 5 (xsd:integer)
dbp:2y
  • 2016 (xsd:integer)
  • 2018 (xsd:integer)
  • 2020 (xsd:integer)
dbp:3a
  • Whiting (en)
  • McKenna (en)
  • McHugh (en)
  • Way (en)
  • Kyriacou (en)
  • Rysiew (en)
dbp:3p
  • 1 (xsd:integer)
  • 6 (xsd:integer)
dbp:3pp
  • 1 (xsd:integer)
dbp:3y
  • 2018 (xsd:integer)
  • 2020 (xsd:integer)
dbp:ps
  • . Primary source: . (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • 元知识论是元哲学的主题和知識論的研究方法。它的目的為构建我们知识的知識以及了解本身的知识。 在中,有兩種基本研究元知识论的方法:传统的规范知识论和自然知识论。 传统的知识论一直关注正当性。根据传统的知识模型,命题p是当且仅当 : 1. * X相信p, 2. * p是真的, 3. * X有理由相信p 自笛卡尔时代以来,笛卡尔一直试图建立获取真实信念的标准,并確定我们有理由相信的信念。因此,知识论的主要项目就是阐明这种知识概念中的辩证条件,以形成合理的真实信念。 自然知识论始于20世纪的威拉德·范奥曼·蒯因。他的主張被称为“替代自然主义”。這套理論是要从知识论中删除一切规范性描述。他希望把知识论与经验心理学的理論结合,以使每一个知识论的陈述都被經驗心理陈述所取代。 (zh)
  • Metaepistemology is the branch of epistemology and metaphilosophy that studies the underlying assumptions made in debates in epistemology, including those concerning the existence and authority of epistemic facts and reasons, the nature and aim of epistemology, and the methodology of epistemology. (en)
rdfs:label
  • Metaepistemology (en)
  • 元知識論 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License