[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Vol. 102
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-02-16
An Efficient ADBF Algorithm Based on Keystone Transform for Wideband Array System
By
Progress In Electromagnetics Research Letters, Vol. 102, 167-175, 2022
Abstract
In this paper, an efficient wideband array adaptive beamforming (ADBF) approach based on keystone transform is presented. In order to eliminate the aperture effect of the wideband signal, the modified keystone transform is applied to remove the time delay between different array elements. Thus, the wideband array is equivalent to the narrowband array, and the orthogonal projection matrix of the target steering vector can be used to filter the desired signal in the training samples, which avoids the signal cancellation caused in the estimation of ADBF covariance matrix. Compared with theestablished algorithm of sliding window, this approach can significantly reduce the computational burden. The feasibility and effectiveness of the proposed method are validated through numerical simulations.
Citation
Yiyang Jiang, Mingwei Shen, and Guodong Han, "An Efficient ADBF Algorithm Based on Keystone Transform for Wideband Array System," Progress In Electromagnetics Research Letters, Vol. 102, 167-175, 2022.
doi:10.2528/PIERL21112605
References

1. Wang, J., D.-D. Cai, and F. Yang, "Aperture effect in uence and analysis of wideband phased array radar," Procedia Engineering, 2012.

2. Zhu, X. and Z. Kai, "A study on compensation of aperture fill time based onfrequency-shifting," International Radar Conference, IET, 2013.

3. Zhang, C. and Q. Lai, "Research on phased array radar affected by aperture fill time," Journal of Microwave Science, Vol. 33, No. 04, 67-69, 2017.

4. Frost, III, O. L., "An algorithm for linearly constrained adaptive array processing," Proc. IEEE, Vol. 60, No. 8, 926-935, 1972.
doi:10.1109/PROC.1972.8817

5. Hoffman, A. and S. M. Kogon, "Subband STAP in wideband radar systems," Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop, IEEE, 2000.

6. Zhang, P., Z. Yang, G. Jing, et al. "Adaptive beamforming via desired signal robust removal for interference-plus-noise covariance matrix reconstruction," Circuits Systems & Signal Processing, Vol. 40, No. 3, 2021.

7. Hu, P., M. Shen, C. Liang, et al. "An efficient broadband adaptive beamforming algorithm based on frequency-space cascade processing," Circuits Systems & Signal Processing, Vol. 37, No. 1, 1-12, 2017.

8. Bao, Z., M. Xing, and T. Wang, Radar Imaging Technology, Beijing Publishing House of Electronics Industry, 2005.

9. Yi, H., C. Y. Fan, J. G. Yang, et al. "Imaging and locating multiple ground moving targets based on keystone transform and FrFT for single channel SAR system," 2nd Asian-Paci c Conference onSynthetic Aperture Radar, 2009, APSAR 2009, 2009.

10. Jiao, Z. and Z. Wei, "A novel detection method based on generalized keystone transform and RFT for high-speed maneuvering target," International Symposium on Computational Intelligence & Design, IEEE, 2016.

11. Wang, N., M. Zhou, B. Zhong, et al. "Wideband signal DOA estimation method based on keystone transform," The Journal of Engineering, Vol. 4, 2019.
doi:10.31186/jenggano.4.1.1-11

12. Zhang, N., X. Tang, and J. Tang, "Broadband beamforming method based on keystone transform pre-processing," Journal of Tsinghua University (Science and Technology), Vol. 53, No. 7, 991-994, 2013.

13. Subbaram, H. and K. Abend, "Interference suppression via orthogonal projections: A performance analysis," IEEE Sixth Sp Workshop on Statistical Signal & Array Processing, IEEE Xplore, 1993.

14. Wang, Y., W. Sheng, and X. Chen, "A fast orthogonal projection beamforming algorithm for planar antenna arrays," Radar Science and Technology, Vol. 17, No. 3, 339-344, 2019.

15. Wang, J. and Y. Zhao, "Research on keystone transform implementation method," Fire Control Radar Technology, Vol. 40, No. 1, 45-51, 2011.

16. Chen, S., L. Huang, and L. Yu, "Variable PRF sampling spotlight SAR imaging based onimproved sinc interpolation," Journal of Radars, Vol. 8, No. 4, 527-536, 2019.

17. Shackelford, A. K., K. Gerlach, and S. D. Blunt, "Partially adaptive STAP using the FRACTA Algorithm," IEEE Transactions on Aerospace & Electronic Systems, Vol. 45, No. 1, 58-69, 2009.
doi:10.1109/TAES.2009.4805263

18. Xu, Z. H., M. Z. Chen, and B. Rao, "The optimal LCMV beamformer under multiple desired signals case," International Radar Conference, IET, 2013.