[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Vol. 6
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-01-08
A Tunable Left-Handed Metamaterial Based on Modified Broadside-Coupled Split-Ring Resonators
By
Progress In Electromagnetics Research Letters, Vol. 6, 35-45, 2009
Abstract
Based on the broadside-coupled split-ring resonator (BC-SRR), a tunable left-handed metamaterial (LHM) was proposed in this paper. The two rings of BC-SRR are etched on two separate substrates so that the coupling between the two rings can be adjusted by slightly slip one of the two substrates relative to the other one. Thus, the magnetic resonance frequency of the modified BC-SRR can be tuned. By combining the modified BC-SRR (MBC-SRR) with continuous conducting wires, a tunable LHM can be realized. The tunable LHM can realize both rough and minor tunings by minor slips along and perpendicular to the gap direction of BC-SRR, respectively. The proposed tunable LHM has many potential applications in microwave devices.
Citation
Jiafu Wang, Shaobo Qu, Jieqiu Zhang, Hua Ma, Yiming Yang, Chao Gu, Xiang Wu, and Zhuo Xu, "A Tunable Left-Handed Metamaterial Based on Modified Broadside-Coupled Split-Ring Resonators," Progress In Electromagnetics Research Letters, Vol. 6, 35-45, 2009.
doi:10.2528/PIERL08120708
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.
doi:10.2528/PIER08062105

4. Ran, L., J. Huangfu, H. Chen, X.. Zhang, K. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502

5. Wang, J. F., S. B. Qu, Z. Xu, J. Q. Zhang, Y. M. Yang, H. Ma, and C. Gu, "A candidate three-dimensional GHz lefthanded metamaterial composed of coplanar magnetic and electric resonators," Photonics Nanostruct.: Fundam. Appl., Vol. 6, 183, 2008.
doi:10.1016/j.photonics.2008.08.001

6. Zhou, J. F., L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Phys. Rev. B, Vol. 73, 041101, 2006.
doi:10.1103/PhysRevB.73.041101

7. Alici, K. B. and E. Ozbay, "A planar metamaterial: Polarization independent fishnet structure," Photonics Nanostruct.: Fundam. Appl., Vol. 6, 102-107, 2008.
doi:10.1016/j.photonics.2008.01.001

8. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114

9. Zhou, J. F., T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Appl. Phys. Lett., Vol. 88, 221103, 2006.
doi:10.1063/1.2208264

10. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propgat., Vol. 51, No. 10, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563

11. Kim, J. and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126

12. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 045104, 2008.
doi:10.1103/PhysRevB.77.045104

13. Sheng, Z. Y. and V. V. Varadan, "Tuning the effective properties of metamaterials by changing the substrate properties," J. Appl. Phys., Vol. 101, 014909, 2007.
doi:10.1063/1.2407275

14. Quan, B. G., C. Li, Q. Sui, J. J.Li, W. M. Liu, F. Li, and C. Z. Gu, "Effects of substrates with different dielectric paramaters on lefthanded frequency of left-handed materials," Chin. Phys. Lett., Vol. 22, No. 5, 1243-1245, 2005.
doi:10.1088/0256-307X/22/5/061

15. Boulais, K. A., D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, "Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs," Appl. Phys. Lett., Vol. 93, 043518, 2008.
doi:10.1063/1.2967192

16. Zhao, Q., L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett., Vol. 90, 011112, 2007.
doi:10.1063/1.2430485

17. Kang, L., Q. Zhao, B. Li, J. Zhou, and H. Zhu, "Experimental verification of a tunable optical negative refraction in nematic liquid crystals," Appl. Phys. Lett., Vol. 90, 181931, 2007.
doi:10.1063/1.2736209

18. Zhang, F., Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D.Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett., Vol. 92, 193104, 2008.
doi:10.1063/1.2926678

19. Wang, X., D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett., Vol. 91, 143122, 2007.
doi:10.1063/1.2795345

20. Wang, D. X., L. X. Ran, H. S. Chen, M. K. Mu, J. A. Kong, and B.-I. Wu, "Active left-handed material collaborated with microwave varactors," Appl. Phys. Lett., Vol. 91, 164101, 2007.
doi:10.1063/1.2799255

21. Chen, H. S., B.-I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett., Vol. 89, 053509, 2006.
doi:10.1063/1.2335382

22. Vélez, A., J. Bonache, and F. Martín, "Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 1, 28-30, 2008.
doi:10.1109/LMWC.2007.911983

23. Aydina, K. and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys., Vol. 101, 024911, 2007.
doi:10.1063/1.2427110

24. He, Y. X., P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Magnetism and Magnetic Materials, Vol. 313, 187-191, 2007.
doi:10.1016/j.jmmm.2006.12.031

25. Zhao, H. J., J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett., Vol. 91, 131107, 2007.
doi:10.1063/1.2790500

26. Lin, X. Q., T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. P. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett., Vol. 92, 131904, 2008.
doi:10.1063/1.2896308

27. Zhao, Q., B. Du, L. Kang, H. J. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. T. Li, and Y. G. Meng, "Unable negative permeability in an isotropic dielectric composite," Appl. Phys. Lett., Vol. 92, 051106, 2008.
doi:10.1063/1.2841811

28. Wang, J. F., S. B. Qu, Z. Xu, H. Ma, Y. M. Yang, and C. Gu, "A controllable magnetic metamaterial: Split-ring resonator with rotated inner ring," IEEE Trans. Antennas Propgat., Vol. 56, No. 7, 2018-2022, 2008.
doi:10.1109/TAP.2008.924728

29. Marqués, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Trans. Antennas Propgat., Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

30. Baena, J. D., R. Marqués, and F. Medina, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, 014402, 2004.
doi:10.1103/PhysRevB.69.014402

31. Chen, X. D., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

32. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617