[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Vol. 57
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-09-27
The Class of BI-Anisotropie Ib-Media
By
, Vol. 57, 1-18, 2006
Abstract
Representation of electromagnetic expressions in terms of the four-dimensional differential-form formalism has been recently shown to allow simple analysis to problems involving general classes of linear electromagnetic media. In the present paper, another class of media is defined by expressing the medium dyadic representing the mapping between the electromagnetic two-forms in terms of one dyadic representing mapping between two four-vectors. Thus, the class, labeled as that of IB-media, is represented by 16 parameters instead of the 36 of the most general bi-anisotropic medium. Condition for the medium dyadic is derived and and properties of fields in the IB-medium are discussed.
Citation
Ismo Veikko Lindell, "The Class of BI-Anisotropie Ib-Media," , Vol. 57, 1-18, 2006.
doi:10.2528/PIER05061302
References

1. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.

2. Baldomir, D. and P. Hammond, Geometry of Electromagnetic Systems, Claren-don Press, 1996.

3. Warnick, K. F. and D. V. Arnold, "Electromagnetic Green functions using differential forms," J. Electro. Waves Appl., Vol. 10, No. 3, 427-438, 1996.

4. Hehl, F. W. and Yu. N. Obukhov, Foundations of Classical Electrodynamics, Birkhüser, 2003.

5. Lindell, I. V., Differential Forms in Electromagnetics, Wiley and IEEE Press, 2004.

6. Lindell, I. V. and K. H. Wallén, "Wave equations for bi-anisotropic media in differential forms," J. Electromag. Waves Appl., Vol. 16, No. 11, 1615-1635, 2002.

7. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," J. Electromag. Waves Appl., Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

8. Lindell, I. V. and A. H. Sihvola, "Transformation method for problems involving perfect electromagnetic conductor (PEMC) structures," IEEE Trans. Antennas Propagat..

9. Lindell, I. V. and A. H. Sihvola, "Realization of the PEMC boundary," IEEE Trans. Antennas Propagat., to appear..

10. Lindell, I. V. and F. Olyslager, "Generalized decomposition of electromagnetic fields in bi-anisotropic media," IEEE Trans. Antennas Propagat., Vol. 46, No. 10, 1584-1585, 1998.
doi:10.1109/8.725294

11. Olyslager, F. and I. V. Lindell, "Field decomposition and factor- ization of the Helmholtz determinant operator for bianisotropic media," IEEE Trans. Antennas and Propag., Vol. 49, No. 4, 660-665, 2001.
doi:10.1109/8.923328

12. Olyslager, F. and I. V. Lindell, "Electromagnetics and exotic media — a quest to the Holy Grail," IEEE Trans. Antennas and Propag. Mag., Vol. 44, No. 2, 48-58, 2002.
doi:10.1109/MAP.2002.1003634

13. Lindell, I. V. and K. H. Wallén, "Generalized Q-media and field decomposition in differential-form approach," J. Electromag. Waves Appl., Vol. 18, No. 8, 1045-1056, 2004.
doi:10.1163/1569393042955397

14. Obukhov, Yu. N. and F. W. Hehl, "Possible skewon effects on light propagation," Phys. Rev., Vol. D70, 2004.

15. Hehl, F. W. and Yu. N. Obukhov, "Linear media in classical electrodynamics and the Post constraint," Phys. Lett., Vol. A334, 249-259, 2005.

16. Hehl, F. W., Y. Itin, and Yu. N. Obukhov, "Recent developments in premetric electrodynamics," Proceedings of the 3rd Summer School in Modern Mathematical Physics.

17. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd Ed., 1995.

18. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.

19. Lindell, I. V., "Electromagnetic wave equation in differential-form representation," Prog. in Electromag. Res., Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002