[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Existence and uniqueness of solutions for a fractional boundary value problem on a graph

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, the authors consider a nonlinear fractional boundary value problem defined on a star graph. By using a transformation, an equivalent system of fractional boundary value problems with mixed boundary conditions is obtained. Then the existence and uniqueness of solutions are investigated by fixed point theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Agarwal, D. O’Regan, and S. Staněk, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371 (2010), 57–68.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Ahmad and J.J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58 (2009), 1838–1843.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Avdonin, Control problems on quantum graphs. In: Analysis on Graphs and its Applications. Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI (2008), 507–521.

    Chapter  Google Scholar 

  4. Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005), 495–505.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Currie and B. Watson, Indefinite boundary value problems on graphs. Oper. Matrices 5 (2011), 565–584.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Currie and B. Watson, Dirichlet-Neumann bracketing for boundary-value problems on graphs. Electron. J. Differential Equations 2005 (2005), Art. ID # 93, 11 pp.

  7. M. Feng, X. Zhang, and W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011 (2011), Art. ID # 720702, 20 pp.

  8. C. Goodrich, Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23 (2010), 1050–1055.

    Article  MATH  MathSciNet  Google Scholar 

  9. D.G. Gordeziani, M. Kupreishvili, H.V. Meladze, and T.D. Davitashvili, On the solution of boundary value problem for differential equations given in graphs. Appl. Math. Inform. Mech. 13 (2008), 80–91.

    MATH  MathSciNet  Google Scholar 

  10. D.G. Gordeziani, H.V. Meladze, and T.D. Davitashvili, On one generalization of boundary value problem for ordinary differential equations on graphs in the three-dimensional space. WSEAS Trans. Math. 8 (2009), 457–466.

    MathSciNet  Google Scholar 

  11. J.R. Graef and L. Kong, Existence of positive solutions to a higher order singular boundary value problem with fractional q-derivatives. Fract. Calc. Appl. Anal. 16, No 3 (2013), 695–708; DOI: 10.2478/s13540-013-0044-5; http://link.springer.com/article/10.2478/s13540-013-0044-5.

    MathSciNet  Google Scholar 

  12. J.R. Graef, L. Kong, Q. Kong, and M. Wang, Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions. Fract. Calc. Appl. Anal. 15, No 3 (2012), 509–528; DOI: 10.2478/s13540-012-0036-x; http://link.springer.com/article/10.2478/s13540-012-0036-x.

    MATH  MathSciNet  Google Scholar 

  13. J.R. Graef, L. Kong, Q. Kong, and M. Wang, Fractional boundary value problems with integral boundary conditions. Appl. Anal. 92 (2013), 2008–2020.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.R. Graef, L. Kong, Q. Kong, and M. Wang, Positive solutions of nonlocal fractional boundary value problems. Discrete Contin. Dyn. Syst., Suppl. 2013 (2013), 283–290.

    Google Scholar 

  15. J.R. Graef, L. Kong, Q. Kong, and M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem with Dirichlet boundary condition. Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Art. ID # 55, 1–11.

    Article  MathSciNet  Google Scholar 

  16. J.R. Graef, L. Kong, and B. Yang, Positive solutions for a semipositone fractional boundary value problem with a forcing term. Fract. Calc. Appl. Anal. 15, No 1 (2012), 8–24; DOI: 10.2478/s13540-012-0002-7; http://link.springer.com/article/10.2478/s13540-012-0002-7.

    MATH  MathSciNet  Google Scholar 

  17. J. Henderson and R. Luca, Positive solutions for a system of nonlocal fractional boundary value problems. Fract. Calc. Appl. Anal. 16, No 4 (2012), 985–1008; DOI: 10.2478/s13540-013-0061-4; http://link.springer.com/article/10.2478/s13540-013-0061-4.

    MathSciNet  Google Scholar 

  18. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).

    Book  MATH  Google Scholar 

  19. D. Jiang and C. Yuan, The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. 72 (2010), 710–719.

    Article  MATH  MathSciNet  Google Scholar 

  20. Q. Kong and M. Wang, Positive solutions of nonlinear fractional boundary value problems with Dirichlet boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2012 (2012), Paper # 17, 1–13.

    Article  MathSciNet  Google Scholar 

  21. P. Kuchment, Graph models for waves in thin structures. Waves Random Media 12, No 4 (2002), R1–R24.

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Kuchment, Quantum graphs: An introduction and a brief survey. In: Analysis on Graphs and its Applications, Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI (2008), 291–312.

    Chapter  Google Scholar 

  23. Y.V. Pokornyi and A.V. Borovskikh, Differential equations on networks (geometric graphs). J. Math. Sci. (N. Y.) 119 (2004), 691–718.

    Article  MATH  MathSciNet  Google Scholar 

  24. V. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer-Verlag, New York (2011).

    Google Scholar 

  25. L. Yang and H. Chen, Unique positive solutions for fractional differential equation boundary value problems. Appl. Math. Lett. 23 (2010), 1095–1098.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Zhang and J. Xu, Unique positive solutions for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16, No 4 (2012), 937–948; DOI: 10.2478/s13540-013-0057-0; http://link.springer.com/article/10.2478/s13540-013-0057-0.

    Google Scholar 

  27. S. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 59 (2010), 1300–1309.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Graef.

About this article

Cite this article

Graef, J.R., Kong, L. & Wang, M. Existence and uniqueness of solutions for a fractional boundary value problem on a graph. fcaa 17, 499–510 (2014). https://doi.org/10.2478/s13540-014-0182-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0182-4

MSC 2010

Key Words and Phrases