[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Antibody-based tissue profiling as a tool for clinical proteomics

  • Original Article
  • Published:
Clinical Proteomics Aims and scope Submit manuscript

Abstract

Here, we show a strategy for high-throughput antibody-based tissue profiling with the aim to create an atlas of protein expression patterns in normal human tissues and cancer tissues representing the 20 most prevalent cancer types. A set of standardized tissue microarrays (TMAs) was produced to allow for rapid screening of a multitude of different cells and tissues using immunohistochemistry. Eight TMA blocks were produced containing 48 different normal human tissues in triplicate and cancer tissue from 216 individually different tumors in duplicate. Sections from these blocks were immunohistochemically stained using five commercial and five in-house generated antibodies. Digital images for annotation of expression profiles were generated using a semiautomated approach. Five hundred seventy-six images and annotation data corresponding to a total of 30 Gbytes of data were collected for each antibody. The data presented here suggest that antibody-based profiling of protein expression in tissues can be used as a valuable tool in clinical proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miettinen, M. (1993). Immunohistochemistry in tumour diagnosis. Ann. Med. 25:221–233.

    PubMed  CAS  Google Scholar 

  2. Gown, A. (2002). Genogenic immunohistochemistry: a new era in diagnostic immunohistochemistry. Curr. Diagn. Pathol. 8:193–200.

    Article  Google Scholar 

  3. Chu, P.G., Chang, K.L., Arber, D.A., and Weiss, L.M. (1999). Practical applications of immunohistochemistry in hematolymphoid neoplasms. Ann. Diagn. Pathol. 3:104–133.

    Article  PubMed  CAS  Google Scholar 

  4. Abbondanzo, S.L. (1999). Paraffin immunohistochemistry as an adjunct to hematopathology. Ann. Diagn. Pathol. 3:318–327.

    Article  PubMed  CAS  Google Scholar 

  5. Dabbs, D.J. (2002). Diagnostic Immunohistochemistry, Churchill Livingstone, Philadelphia, PA.

    Google Scholar 

  6. Backvall, H., Stromberg, S., Gustafsson, A., Asplund, A., Sivertsson, A., Lundeberg, J., et al. (2004). Mutation spectra of epidermal p53 clones adjacent to basal sell carcinoma and squamous cell carcinoma. Exp. Dermatol. 13:643–650.

    Article  PubMed  Google Scholar 

  7. Warford, A., Howat, W., and McCafferty, J. (2004). Expression profiling by high-throughput immunohistochemistry. J. Immunol. Methods 290:81–92.

    Article  PubMed  CAS  Google Scholar 

  8. Agaton, C., Galli, J., Hoiden Guthenberg, I., Janzon, L., Hansson, M., Asplund, A., et al. (2003). Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol. Cell. Proteomics 2:405–414.

    PubMed  CAS  Google Scholar 

  9. Agaton, C., Falk, R., Hoiden Guthenberg, I., Gostring, L., Uhlen, M., and Hober, S. (2004). Selective enrichment of monospecific polyclonal antibodies for antibody-based proteomics efforts. J. Chromatogr. A 1043:33–40.

    Article  PubMed  CAS  Google Scholar 

  10. Simon, R., Mirlacher, M., and Sauter, G. (2003). Tissue microarrays in cancer diagnosis. Expert Rev. Mol. Diagn. 3:421–430.

    Article  PubMed  CAS  Google Scholar 

  11. Kraaz, W., Risberg, B., and Hussein, A. (1988). Multiblock: an aid in diagnostic immunohistochemistry. J. Clin. Pathol. 41:1337.

    PubMed  CAS  Google Scholar 

  12. Battifora, H. (1986). The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab. Invest. 55:244–248.

    PubMed  CAS  Google Scholar 

  13. Wan, W.H., Fortuna, M.B., and Furmanski, P. (1987). A rapid and efficient method for testing immunohistochemical reactivity of monoclonal antibodies against multiple tissue samples simultaneously. J. Immunol. Methods 103:121–129.

    Article  PubMed  CAS  Google Scholar 

  14. Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., Leighton, S., et al. (1998). Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4:844–847.

    Article  PubMed  CAS  Google Scholar 

  15. Kallioniemi, O.P., Wagner, U., Kononen, J., and Sauter, G. (2001). Tissue microarray technology for high-throughput molecular profiling of cancer. Hum. Mol. Genet. 10:657–662.

    Article  PubMed  CAS  Google Scholar 

  16. Wester, K., Asplund, A., Backvall, H., Micke, P., Derveniece, A., Hartmane, I., et al. (2003). Zinc-based fixative improves preservation of genomic DNA and proteins in histoprocessing of human tissues. Lab. Invest. 83:889–899.

    PubMed  CAS  Google Scholar 

  17. Rimm, D.L., Camp, R.L., Charette, L.A., Costa, J., Olsen, D.A., and Reiss, M. (2001). Tissue microarray: a new technology for amplification of tissue resources. Cancer J. 7:24–31.

    PubMed  CAS  Google Scholar 

  18. Shi, S.R., Cote, R.J., and Taylor, C.R. (2001). Antigen retrieval techniques: current perspectives. J. Histochem. Cytochem. 49:931–937.

    PubMed  CAS  Google Scholar 

  19. Becich, M.J. (2001). The role of the pathologist as tissue refiner and data miner: the impact of functional genomics on the modern pathology laboratory and the critical roles of pathology informatics and bioinformatics. Mol. Diagn. 5:287–299.

    Article  Google Scholar 

  20. Camp, R.L., Chung, G.G., and Rimm, D.L. (2002). Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat. Med. 8:1323–1327.

    Article  PubMed  CAS  Google Scholar 

  21. Wester, K., Andersson, A.C., Ranefall, P., Bengtsson, E., Malmstrom, P.U., and Busch, C. (2000). Cultured human fibroblasts in agarose gel as a multi-functional control for immunohistochemistry. Standardization Of Ki67 (MIB1) assessment in routinely processed urinary bladder carcinoma tissue. J. Pathol. 190:503–511.

    Article  PubMed  CAS  Google Scholar 

  22. Quackenbush, J. (2001). Computational analysis of microarray data. Nat. Rev. Genet. 2:418–427.

    Article  PubMed  CAS  Google Scholar 

  23. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 100:8418–8423.

    Article  PubMed  CAS  Google Scholar 

  24. Cleator, S. and Ashworth, A. (2004). Molecular profiling of breast cancer: clinical implications. Br. J. Cancer 90:1120–1124.

    Article  PubMed  CAS  Google Scholar 

  25. Braunschweig, T., Chung, J.Y., and Hewitt S.M. (2004). Perspectives in tissue microarrays. Comb. Chem. High Throughput Screen. 7:575–585.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Kampf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampf, C., Andersson, AC., Wester, K. et al. Antibody-based tissue profiling as a tool for clinical proteomics. Clin Proteom 1, 285–299 (2004). https://doi.org/10.1385/CP:1:3-4:285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CP:1:3-4:285

Key words

Navigation