[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer

Abstract

Melanoma differentiation associated gene-7 (Mda-7)/IL-24 was previously cloned into ZD55 (an adenovirus with E1B55 deleted) to form ZD55-IL-24, which had much better antitumor effect than Ad-IL-24. According to its good antitumor properties, ZD55-IL-24 has been used in preclinical studies. But ZD55-IL-24 alone still could not completely eradicate established tumors in all nude mice. It was reported that IL-24 could induce and enhance the activity of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (a member of tumor necrosis factor (TNF) superfamily). Accordingly, the combined use of ZD55-IL-24 and ZD55-TRAIL was carried out in this study. Treatment with both ZD55-IL-24 and ZD55-TRAIL could induce more significant apoptosis in cancer cells in vitro compared with ZD55-IL-24 or ZD55-TRAIL alone. The combination of the two replicative adenoviruses had better antitumor activity in vivo than that of single oncolytic adenovirus and led to complete eradication of xenograft tumors in all treated mice. Upregulation of TRAIL was observed in tumor cells infected with ZD55-IL-24 and studies of the apoptotic cascade regulators indicate that ZD55-IL-24 could further enhance the activation of apoptosis through the TNF family of death receptors. We demonstrated for the first time the potential therapeutic effect of combined ZD55-IL-24 with ZD55-TRAIL for the targeted therapy of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CPE:

cytopathic effect

DR4:

death receptor 4

Mda-7:

melanoma differentiation associated gene-7

MOI:

multiplicity of infection

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PARP:

poly(ADP-ribose) polymerase

TUNEL:

TdT-mediated dUTP-biotin nick end labeling

ZD55:

recombinant adenovirus with E1B 55 KDa gene deletion

References

  1. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB . Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995; 11: 2477–2486.

    CAS  PubMed  Google Scholar 

  2. Lebedeva IV, Su ZZ, Chang Y, Kitada S, Reed JC, Fisher PB . The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene 2002; 21: 708–718.

    Article  CAS  PubMed  Google Scholar 

  3. Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA et al. Bcl-2 and Bcl-xL differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene 2003; 22: 8758–8773.

    Article  CAS  PubMed  Google Scholar 

  4. Su ZZ, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA 1998; 95: 14400–14405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saeki T, Mhashilkar A, Chada S, Branch C, Roth JA, Ramesh R . Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene Therapy 2000; 7: 2051–2057.

    Article  CAS  PubMed  Google Scholar 

  6. Cao XX, Mohuiddin I, Chada S, Mhashilkar AM, Ozvaran MK, McConkey DJ et al. Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells, and is abrogated by over-expression of BCL-XL. Mol Med 2002; 8: 869–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K et al. Mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA 2002; 99: 10054–10059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saeki T, Mhashilkar A, Swanson X, Zou-Yang XH, Sieger K, Kawabe S et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene 2002; 21: 4558–4566.

    Article  CAS  PubMed  Google Scholar 

  9. Pataer A, Vorburger SA, Barber GN, Chada S, Mhashilkar AM, Zou-Yang H et al. Adenoviral transfer of the melanoma differentiation-associated gene-7 (mda-7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res 2002; 62: 2239–2243.

    CAS  PubMed  Google Scholar 

  10. Pataer A, Vorburger SA, Chada S, Balachandran S, Barber GN, Roth JA et al. Melanoma differentiation-associated gene-7 protein physically associates with the double-stranded RNA-activated protein kinase PKR. Mol Ther 2005; 11: 717–723.

    Article  CAS  PubMed  Google Scholar 

  11. Ekmekcioglu S, Ellerhorst JA, Mumm JB, Zheng M, Broemeling L, Prieto VG et al. Negative association of melanoma differentiation associated gene (mda-7) and inducible nitric oxide synthase (iNOS) in human melanoma: MDA-7 regulates iNOS expression in melanoma cells. Mol Cancer Ther 2003; 2: 9–17.

    Article  CAS  PubMed  Google Scholar 

  12. Mhashilkar AM, Stewart AL, Sieger K, Yang HY, Khimani AH, Ito I et al. MDA-7 negatively regulates the beta-catenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther 2003; 8: 207–219.

    Article  CAS  PubMed  Google Scholar 

  13. Sauane M, Gopalkrishnan RV, Lebedeva I, Mei MX, Sarkar D, Su ZZ et al. Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways. J Cell Physiol 2003; 196: 334–345.

    Article  CAS  PubMed  Google Scholar 

  14. Ishikawa S, Nakagawa T, Miyahara R, Kawano Y, Takenaka K, Yanagihara K et al. Expression of MDA-7/IL-24 and its clinical significance in resected non-small cell lung cancer. Clin Cancer Res 2005; 11: 1198–1202.

    Article  CAS  PubMed  Google Scholar 

  15. Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N et al. Intratumoral injection of INGN241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL-24): biologic outcome in advanced cancer patients. Mol Ther 2005; 11: 161–172.

    Article  Google Scholar 

  16. Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL-24; INGN241) in patients with advanced carcinoma: a phase I study. Mol Ther 2005; 11: 149–159.

    Article  CAS  PubMed  Google Scholar 

  17. Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Gupta P et al. Mda-7/IL-24: exploring cancer's achille's heel. Mol Ther 2005; 11: 4–18.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang ZL, Zou WG, Luo CX, Li BH, Wang JH, Sun LY et al. An armed oncolytic adenovirus system ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 2003; 13: 481–489.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Z, Zou W, Wang J, Gu J, Dang Y, Li B et al. Suppression of tumor growth by oncolytic adenovirus-mediated delivery of an antiangiogenic gene, sflt-1(1-3). Mol Ther 2005; 11: 553–562.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao L, Gu J, Dong A, Zhang Y, Zhong L, He L et al. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer. Hum Gene Ther 2005; 16: 845–858.

    Article  CAS  PubMed  Google Scholar 

  21. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  22. Kagawa S, He C, Gu J, Koch P, Rha SJ, Roth JA et al. Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res 2001; 61: 3330–3338.

    CAS  PubMed  Google Scholar 

  23. Shi J, Zheng D, Liu Y, Sham MH, Tam P, Farzaneh F et al. Overexpression of soluble TRAIL induces apoptosis in human lung adenocarcinoma and inhibits growth of tumor xenografts in nude mice. Cancer Res 2005; 65: 1687–1692.

    Article  CAS  PubMed  Google Scholar 

  24. Griffith TS, Anderson RD, Davidson BL, Williams RD, Ratliff TL . Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol 2000; 165: 2886–2894.

    Article  CAS  PubMed  Google Scholar 

  25. Lee J, Hampl M, Albert P, Fine HA . Antitumor activity and prolonged expression from a TRAIL-expressing adenoviral vector. Neoplasia 2002; 4: 312–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Griffith TS, Broghammer EL . Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther 2001; 4: 257–266.

    Article  CAS  PubMed  Google Scholar 

  27. Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N et al. A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther 2004; 9: 496–509.

    Article  CAS  PubMed  Google Scholar 

  28. Lin T, Zhang L, Davis J, Gu J, Nishizaki M, Ji L et al. Combination of TRAIL gene therapy and chemotherapy enhances antitumor and antimetastasis effects in chemosensitive and chemoresistant breast cancers. Mol Ther 2003; 8: 441–448.

    Article  CAS  PubMed  Google Scholar 

  29. Nishizaki M, Sasaki J, Fang B, Atkinson EN, Minna JD, Roth JA et al. Synergistic tumor suppression by coexpression of FHIT and p53 coincides with FHIT-mediated MDM2 inactivation and p53 stabilization in human non-small cell lung cancer cells. Cancer Res 2004; 64: 5745–5752.

    Article  CAS  PubMed  Google Scholar 

  30. Huang X, Lin T, Gu J, Zhang L, Roth JA, Stephens LC et al. Combined TRAIL and bax gene therapy prolonged survival in mice with ovarian cancer xenograft. Gene Therapy 2002; 9: 1379–1386.

    Article  CAS  PubMed  Google Scholar 

  31. Mhashilkar AM, Schrock RD, Hindi M, Liao J, Sieger K, Kourouma F et al. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol Med 2001; 7: 271–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chada S, Sutton RB, Ekmekcioglu S, Ellerhorst J, Mumm JB, Leitner WW et al. MDA-7/IL-24 is a unique cytokine–tumor suppressor in the IL-10 family. Int Immunopharmacol 2004; 4: 649–667.

    Article  CAS  PubMed  Google Scholar 

  33. Fisher PB, Gopalkrishnan RV, Chada S, Ramesh R, Grimm EA, Rosenfeld MR et al. Mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene. Cancer Bio Ther 2003; 2: 24–38.

    Google Scholar 

  34. Ramesh R, Ito I, Gopalan B, Saito Y, Mhashilkar AM, Chada S . Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther 2004; 9: 510–518.

    Article  CAS  PubMed  Google Scholar 

  35. Chen J, Chada S, Mhashilkar A, Miano JM . Tumor suppressor MDA-7/IL-24 selectively inhibits vascular smooth muscle cell growth and migration. Mol Ther 2003; 8: 220–229.

    Article  CAS  PubMed  Google Scholar 

  36. Nishikawa T, Ramesh R, Munshi A, Chada S, Meyn RE . Adenovirus-mediated mda-7 (IL-24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther 2004; 9: 818–928.

    Article  CAS  PubMed  Google Scholar 

  37. Ramesh R, Mhashilkar AM, Tanaka F, Saito Y, Branch CD, Sieger K et al. Melanoma differentiation-associated gene 7/interleukin (IL-24) is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res 2003; 63: 5105–5113.

    CAS  PubMed  Google Scholar 

  38. Caudell EG, Mumm JB, Poindexter N, Ekmekcioglu S, Mhashilkar AM, Yang XH et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol 2002; 168: 6041–6046.

    Article  CAS  PubMed  Google Scholar 

  39. Chada S, Sutton RB, Ekmekcioglu S, Ellerhorst J, Mumm JB, Leitner WW et al. MDA-7/IL-24 is a unique cytokine--tumor suppressor in the IL-10 family. Int Immunopharmacol 2004; 4: 649–667.

    Article  CAS  PubMed  Google Scholar 

  40. Chada S, Mhashilkar AM, Ramesh R, Mumm JB, Sutton RB, Bocangel D et al. Bystander activity of Ad-mda7: human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol Ther 2004; 10: 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  41. Addison CL, Bramson JL, Hitt MM, Muller WJ, Gauldie J, Graham FL . Intratumoral coinjection of adenoviral vectors expressing IL-2 and IL-12 results in enhanced frequency of regression of injected and untreated distal tumors. Gene Therapy 1998; 5: 1400–1409.

    Article  CAS  PubMed  Google Scholar 

  42. Nasu Y, Bangma CH, Hull GW, Yang G, Wang J, Shimura S et al. Combination gene therapy with adenoviral vector-mediated HSV-tk+GCV and IL-12 in an orthotopic mouse model for prostate cancer. Prostate Cancer Prostatic Dis 2001; 4: 44–55.

    Article  CAS  PubMed  Google Scholar 

  43. Caruso M, Pham-Nguyen K, Kwong YL, Xu B, Kosai KI, Finegold M et al. Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma. Proc Natl Acad Sci USA 1996; 93: 11302–11306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Drozdzik M, Qian C, Xie X, Peng D, Bilbao R, Mazzolini G et al. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J Hepatol 2000; 32: 279–286.

    Article  CAS  PubMed  Google Scholar 

  45. Wilczynska U, Kucharska A, Szary J, Szala S . Combined delivery of an antiangiogenic protein (angiostatin) and an immunomodulatory gene (interleukin-12) in the treatment of murine cancer. Acta Biochim Pol 2001; 48: 1077–1084.

    CAS  PubMed  Google Scholar 

  46. Kagawa S, He C, Gu J, Koch P, Rha SJ, Roth JA et al. Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res 2001; 61: 3330–3338.

    CAS  PubMed  Google Scholar 

  47. Griffith TS, Anderson RD, Davidson BL, Williams RD, Ratliff TL . Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol 2000; 165: 2886–2894.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 30120160823), the Chinese National 863 High Technology R&D Project of China (No. 2003AA216031 and No. 2002AA216021) and the 973 Project (No. 2004CB518804), UTE project of CIMA and grant Instituto Carlos III C03/02 (Spain). We also thank Lanyin Sun and Jinfa Gu for help in professional technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Dong, A., Gu, J. et al. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther 13, 1011–1022 (2006). https://doi.org/10.1038/sj.cgt.7700969

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700969

Keywords

This article is cited by

Search

Quick links