[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advanced genetic tools for plant biotechnology

A Corrigendum to this article was published on 26 November 2013

This article has been updated

Key Points

  • There are several emerging genetic tools that will have increasingly important roles in the future of plant biotechnology and crop genetics.

  • Precise transgene or endogenous gene expression can be regulated at the transcriptional level by novel synthetic promoters, as well as synthetic transcriptional activators and repressors, for increased spatio-temporal control.

  • The recent development of several advanced DNA construction and assembly methods will allow the production of long DNA constructs and vectors that are needed for multigene transformation into plants.

  • Plant transformation with large constructs that are needed for metabolic pathway engineering is enabled by several techniques, including plant artificial chromosomes. There is no clear 'winner' among the several techniques presented.

  • Plant-genome editing using a host of new tools, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs), is poised to have, perhaps, the greatest effect on precisely changing DNA sequences in crops in novel ways.

  • Tools for transgene removal and confinement are crucial for the commercialization of certain crops and crop–transgene combinations to ensure biosafety and government regulatory compliance.

Abstract

Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic promoters for the phytosensing of plant pathogenic bacteria.
Figure 2: Synthetic transcription factors for targeted gene activation or targeted genome modification.
Figure 3: An example of the 'top-down' approach for the generation of plant artificial chromosomes.
Figure 4: Bioconfinement methods.
Figure 5: Signalling components used for phytosensing of the explosive TNT.

Similar content being viewed by others

Change history

  • 26 November 2013

    In Figure 4d, e of this article, the products of transgene excision and marker gene removal were shown incorrectly. The article has been corrected online. The authors apologize for the error.

References

  1. Collins, N. C., Tardieu, F. & Tuberosa, R. Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol. 147, 469–486 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wollenweber, B., Porter, J. R. & Lubberstedt, T. Need for multidisciplinary research towards a second green revolution. Curr. Opin. Plant Biol. 8, 337–341 (2005).

    PubMed  Google Scholar 

  3. Naqvi, S. et al. When more is better: multigene engineering in plants. Trends Plant Sci. 15, 48–56 (2010).

    CAS  PubMed  Google Scholar 

  4. Venter, M. Synthetic promoters: genetic control through cis engineering. Trends Plant Sci. 12, 118–124 (2007).

    CAS  PubMed  Google Scholar 

  5. De Wilde, C. et al. Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol. Biol. 43, 347–359 (2000).

    CAS  PubMed  Google Scholar 

  6. Kooter, J. M., Matzke, M. A. & Meyer, P. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4, 340–347 (1999).

    CAS  PubMed  Google Scholar 

  7. Venter, M. & Botha, F. C. in Plant Developmental Biology — Biotechnological Perspectives Vol. 2 (eds Pua, E. C. & Davey, M. R.) 393–408 (Springer, 2010).

    Google Scholar 

  8. Liu, W., Mazarei, M., Rudis, M. R., Fethe, M. H. & Stewart, C. N. Jr. Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnol. 11, 108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, W. et al. Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis. Plant Biotechnol. J. 11, 43–52 (2013). References 8 and 9 provide good examples of the use of synthetic promoters for the phytosensing of bacterial pathogen in plants.

    CAS  PubMed  Google Scholar 

  10. Mehrotra, R. et al. Designer promoter: an artwork of cis engineering. Plant Mol. Biol. 75, 527–536 (2011).

    CAS  PubMed  Google Scholar 

  11. Hu, J., Li, B. & Kihara, D. Limitations and potentials of current motif discovery algorithms. Nucleic Acids Res. 33, 4899–4913 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tompa, M. et al. Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotech. 23, 137–144 (2005). This paper provides an excellent comparison of the effectiveness of 13 computational tools for de novo motif discovery.

    CAS  Google Scholar 

  13. Koschmann, J. et al. Intergration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis. Plant Physiol. 160, 178–191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mukherji, S. & van Oudenaarden, A. Synthetic biology: understanding biological design from synthetic circuits. Nature Rev. Genet. 10, 859–871 (2009).

    CAS  PubMed  Google Scholar 

  15. Sawant, S., Singh, P. K., Madanala, R. & Tuli, R. Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theor. Appl. Genet. 102, 635–644 (2001).

    CAS  Google Scholar 

  16. Comai, L., Moran, P. & Maslyar, D. Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol. Biol. 15, 373–381 (1990).

    CAS  PubMed  Google Scholar 

  17. Petolino, J. F. & Davies, J. P. Designed transcriptional regulators for trait development. Plant Sci. 201–202, 128–136 (2013).

    PubMed  Google Scholar 

  18. Bogdanove, A. J. & Voytas, D. F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    CAS  PubMed  Google Scholar 

  19. Guan, X. et al. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc. Natl Acad. Sci. USA 99, 13296–13301 (2010).

    Google Scholar 

  20. Sanchez, J.-P., Ullman, C., Moore, M., Choo, Y. & Chua, N.-H. Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol. 43, 1465–1472 (2002).

    CAS  PubMed  Google Scholar 

  21. Li, J. et al. Activation domains for controlling plant gene expression using designed transcription factors. Plant Biotechnol. J. 11, 671–680 (2013).

    CAS  PubMed  Google Scholar 

  22. Sanchez, J.-P., Ullman, C., Moore, M., Choo, Y. & Chua, N.-H. Regulation of Arabidopsis thaliana 4-coumarate: coenzyme-A ligase-1 expression by artificial zinc finger chimeras. Plant Biotechnol. J. 4, 103–114 (2006).

    CAS  PubMed  Google Scholar 

  23. Lindhout, B. I., Pinas, J. E., Hooykaas, P. J. J. & van der Zaal, B. J. Employing libraries of zinc finger artificial transcription factors to screen for homologous recombination mutants in Arabidopsis. Plant J. 48, 475–483 (2006).

    CAS  PubMed  Google Scholar 

  24. Holmes-Davis, R. et al. Gene regulation in planta by plant-derived engineered zinc finger protein transcription factors. Plant Mol. Biol. 57, 411–423 (2005).

    CAS  PubMed  Google Scholar 

  25. Van Eenennaam, A. L. et al. Elevation of seed α-tocopherol levels using plant-based transcription factors targeted to an endogenous locus. Metabol. Eng. 6, 101–108 (2004).

    CAS  Google Scholar 

  26. Gupta, M. et al. Transcriptional activation of Brassica napus β-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnol. J. 10, 783–791 (2012).

    CAS  PubMed  Google Scholar 

  27. Ordiz, M. I., Magnenat, L., Barbas, C. F. 3rd. & Beachy, R. N. Negative regulation of the RTBV promoter by designed zinc finger proteins. Plant Mol. Biol. 72, 621–630 (2010).

    CAS  PubMed  Google Scholar 

  28. Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    CAS  PubMed  Google Scholar 

  29. Boch, J. & Bonas, U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48, 419–436 (2010).

    CAS  PubMed  Google Scholar 

  30. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009). References 28 and 30 are the two studies that first reported the molecular mechanisms of bacterial TALEs.

    CAS  PubMed  Google Scholar 

  31. Morbitzer, R., Romer, P., Boch, J. & Lahaye, T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl Acad. Sci. USA 107, 21617–21622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahfouz, M. M. et al. Targeted transcriptional repression using a chimeric TALE–SRDX repressor protein. Plant Mol. Biol. 78, 311–321 (2012).

    CAS  PubMed  Google Scholar 

  33. Knight, T. Idempotent vector design for standard assembly of Biobricks. DSpace@MIT [online], (2003).

    Google Scholar 

  34. Anderson, J. C. et al. BglBricks: a flexible standard for biological part assembly. J. Biol. Eng. 4, 1 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    PubMed  PubMed Central  Google Scholar 

  36. Sasaki, Y. Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the MultiSite Gateway system. J. Biotechnol. 107, 233 (2004).

    CAS  PubMed  Google Scholar 

  37. Nour-Eldin, H. H., Geu-Flores, F. & Halkier, B. A. USER cloning and USER fusion: the ideal cloning techniques for small and big laboratories. Methods Mol. Biol. 643, 185–200 (2010).

    CAS  PubMed  Google Scholar 

  38. Sleight, S., Bartley, B., Lieviant, J. & Sauro, H. In-fusion BioBrick assembly and re-engineering. Nucleic Acids Res. 38, 2624 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, M. Z. & Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature Methods 4, 251–256 (2007).

    CAS  PubMed  Google Scholar 

  40. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010). This study reports the largest de novo synthesized and assembled genome.

    CAS  PubMed  Google Scholar 

  41. Hillson, N. J., Rosengarten, R. D. & Keasling, J. D. j5 DNA assembly design automation software. ACS Synth. Biol. 1, 14–21 (2012).

    CAS  PubMed  Google Scholar 

  42. Sarrion-Perdigones, A. et al. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS ONE 6, e21622 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cardi, T., Lenzi, P. & Maliga, P. Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev. Vaccines 9, 893–911 (2010).

    CAS  PubMed  Google Scholar 

  44. Scotti, N., Rigano, M. M. & Cardi, T. Production of foreign proteins using plastid transformation. Biotechnol. Adv. 30, 387–397 (2012).

    CAS  PubMed  Google Scholar 

  45. Maliga, P. & Bock, R. Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol. 155, 1501–1510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Clarke, J. L. & Daniell, H. Plastid biotechnology for crop production: present status and future perspectives. Plant Mol. Biol. 76, 211–220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dufourmantel, N. et al. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1 Abprotoxin. Plant Mol. Biol. 58, 659–668 (2006).

    Google Scholar 

  48. Sidorov, V. A. et al. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 19, 209–216 (1999).

    CAS  PubMed  Google Scholar 

  49. Apel, W. & Bock, R. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol. 151, 59–66 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lelivelt, C. L. C. et al. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol. Biol. 58, 763–774 (2005).

    CAS  PubMed  Google Scholar 

  51. Kanamoto, H. et al. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgen. Res. 15, 205–217 (2006).

    CAS  Google Scholar 

  52. Marchis, F. D., Wang, Y., Stevanato, P., Arcioni, S. & Bellucci, M. Genetic transformation of the sugar beet plastome. Transgen. Res. 18, 17–30 (2009).

    CAS  Google Scholar 

  53. Singh, A. K., Verma, S. S. & Bansal, K. C. Plastid transformation in eggplant (Solanum melongena L.). Transgen. Res. 19, 113–119 (2010).

    CAS  Google Scholar 

  54. Kumar, S., Dhingra, A. & Daniell, H. Plastid expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol. 136, 2843–2854 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hou, B. K. et al. Chloroplast transformation in oilseed rape. Transgen. Res. 12, 111–114 (2003).

    CAS  Google Scholar 

  56. Liu, C. W., Lin, C. C., Chen, J. J. & Tseng, M. J. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. Capitata L.) by particle bombardment. Plant Cell Rep. 26, 1733–1744 (2007).

    CAS  PubMed  Google Scholar 

  57. Werner, S., Breus, O., Symonenko, Y., Marillonnet, S. & Gleba, Y. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc. Natl Acad. Sci. USA 108, 14061–14066 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Marton, I. et al. Nontransgenic genome modification in plant cells. Plant Physiol. 154, 1079–1087 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mozes-Koch, R. et al. Expression of an entire bacterial operon in plants. Plant Physiol. 158, 1883–1892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y. G. et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl Acad. Sci. USA 96, 6535–6540 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, L., Liu, Y.-G., Xu, X. & Li, B. Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc. Natl Acad. Sci. USA 100, 5962–5967 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hamilton, C. M., Frary, A., Lewis, C. & Tanksley, S. D. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl Acad. Sci. USA 93, 9975–9979 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, Q.-J. et al. MISSA is a highly efficient in vivo DNA assembly method for plant multiple-gene transformation. Plant Physiol. 153, 41–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ananiev, E. V. et al. Artificial chromosome formation in maize (Zea mays L.). Chromosoma 118, 157–177 (2009).

    CAS  PubMed  Google Scholar 

  65. Carlson, S. R. et al. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet. 3, 1965–1974 (2007). This paper is the first report of the bottom-up approach for minichromosome generation in plants.

    CAS  PubMed  Google Scholar 

  66. Kapusi, E. et al. Telomere-mediated truncation of barley chromosomes. Chromosoma 121, 181–190 (2012).

    CAS  PubMed  Google Scholar 

  67. Nelson, A. D., Lamb, J. C., Kobrossly, P. S. & Shippen, D. E. Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. Plant Cell 23, 2263–2272 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Teo, C. H. et al. Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J. 68, 28–39 (2011).

    CAS  PubMed  Google Scholar 

  69. Yu, W., Lamb, J. C., Han, F. & Birchler, J. A. Telomere-mediated chromosomal truncation in maize. Proc. Natl Acad. Sci. USA 103, 17331–17336 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, W., Han, F., Gao, Z., Vega, J. M. & Birchler, J. A. Construction and behavior of engineered minichromosomes in maize. Proc. Natl Acad. Sci. USA 104, 8924–8929 (2007). References 69 and 70 are the first reports of the top-down approach for minichromosome generation in plants.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Frary, A. & Hamilton, C. M. Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgen. Res. 10, 121–132 (2001).

    CAS  Google Scholar 

  72. Houben, A., Dawe, R. K., Jiang, J. & Schubert, I. Engineered plant minichromosomes: a bottom-up success? Plant Cell 20, 8–10 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gaeta, R. T. & Krishnaswamy, L. in Plant Chromosome Engineering: Methods and Protocols, Methods in Molecular Biology Vol. 701 (ed. Birchler, J. A.) 131–146 (Springer, 2011).

    Google Scholar 

  74. Gaeta, R. T., Masonbrink, R. E., Krishnaswamy, L., Zhao, C. & Birchler, J. A. Synthetic chromosome platforms in plants. Annu. Rev. Plant Biol. 63, 307–330 (2012).

    CAS  PubMed  Google Scholar 

  75. Xu, C., Cheng, Z. & Yu, W. Construction of rice mini-chromosome by telomere-mediated chromosomal truncation. Plant J. 70, 1070–1079 (2012).

    CAS  PubMed  Google Scholar 

  76. Vega, J. M. et al. Agrobacterium-mediated transformation of maize (Zea mays L.) with Cre–lox site specific recombination cassettes in BIBAC vectors. Plant Mol. Biol. 66, 587–598 (2008).

    CAS  PubMed  Google Scholar 

  77. Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002). This is the first report of using ZFN for genome engineering by linking the cleavage domain of the Fok I restriction enzyme to designed ZFPs.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    PubMed  Google Scholar 

  79. Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    CAS  PubMed  Google Scholar 

  80. Lloyd, A., Plaisier, C. L., Carroll, D. & Drews, G. N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl Acad. Sci. USA 102, 2232–2237 (2005). This paper is the first report of the use of ZFNs in plants.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, T. et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 39, 359–372 (2010). References 81 and 82 are the first reports of the potential use of TALENs as site-specific endonucleases for selective genome cleavage.

    PubMed  PubMed Central  Google Scholar 

  83. Osakabe, K., Osakabe, Y. & Toki, S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc. Natl Acad. Sci. USA 107, 12034–12039 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, F. et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl Acad. Sci. USA 107, 12028–12033 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Townsend, J. A. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442–445 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shukla, V. K. et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–443 (2009).

    CAS  PubMed  Google Scholar 

  87. Curtin, S. J. et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 156, 466–473 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mahfouz, M. M. et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl Acad. Sci. USA 108, 2623–2628 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, Y. et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 161, 20–27 (2013).

    CAS  PubMed  Google Scholar 

  90. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shan, Q. et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant 6, 1365–1368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, T., Liu, B., Spalding, M. H., Weeks, D. P. & Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotech. 30, 390–392 (2012).

    CAS  Google Scholar 

  93. De Pater, S., Neuteboom, L. W., Pinas, J. E., Hooykaas, P. J. J. & Van Der Zaal, B. J. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnol. J. 7, 821–835 (2009).

    CAS  PubMed  Google Scholar 

  94. Puchta, H., Dujon, B. & Hohn, B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl Acad. Sci. USA 93, 5055–5060 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gao, H. et al. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J. 61, 176–187 (2010).

    CAS  PubMed  Google Scholar 

  96. D'Halluin, K., Vanderstraeten, C., Stals, E., Cornelissen, M. & Ruiter, R. Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol. J. 6, 93–102 (2008).

    CAS  PubMed  Google Scholar 

  97. Yang, M. et al. Targeted mutagenesis in the progeny of maize transgenic plants. Plant Mol. Biol. 70, 669–679 (2009).

    CAS  PubMed  Google Scholar 

  98. Prieto, J. et al. The C terminal loop of the homing endonuclease I CreI is essential for site recognition, DNA binding and cleavage. Nucleic Acids Res. 35, 3262–3271 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jinek, M. et al. A programmable dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). The first report that the engineered fusion of mature crRNAs to tracrRNA forms a two-RNA structure which directs dual RNA-guided genome editing.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, J.-F. et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotech. 31, 688–691 (2013).

    CAS  Google Scholar 

  103. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G. & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotech. 31, 691–693 (2013).

    CAS  Google Scholar 

  104. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR–Cas system. Nature Biotech. 31, 686–688 (2013). References 102–104 are the first reports of the application of the CRISPR–Cas system for targeted genome modification in plants.

    CAS  Google Scholar 

  105. Daniell, H. Molecular strategies for gene containment in transgenic crops. Nature Biotech. 20, 581–586 (2002).

    CAS  Google Scholar 

  106. Yau, Y. Y. & Stewart, C. N. Jr. Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol. 13, 36 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Akbudak, M. A. & Srivastava, V. Improved FLP recombinase, FLPe, efficiently removes marker gene from transgene locus developed by Cre–lox mediated site-specific gene integration in rice. Mol. Biotechnol. 49, 82–89 (2011).

    CAS  PubMed  Google Scholar 

  108. Khan, R. S., Nakamura, I. & Mii, M. Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep. 30, 1041–1053 (2011).

    CAS  PubMed  Google Scholar 

  109. Lloyd, A. M. & Davis, R. W. Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol. Gen. Genet. 242, 653–657 (1994).

    CAS  PubMed  Google Scholar 

  110. Luo, K. et al. 'GM-gene-deletor': fused loxPFRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol. J. 5, 263–274 (2007).

    CAS  PubMed  Google Scholar 

  111. Nandy, S. & Srivastava, V. Site-specific gene integration in rice genome mediated by the FLP–FRT recombination system. Plant Biotechnol. J. 9, 713–721 (2011).

    CAS  PubMed  Google Scholar 

  112. Kolodii, G. The shuffling function of resolvases. Gene 269, 121–130 (2001).

    Google Scholar 

  113. Rao, M. R. et al. FLP/FRT recombination from yeast: application of a two gene cassette scheme as an inducible system in plants. Sensors 10, 8526–8535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zuo, J., Niu, Q. W., Moller, S. G. & Chua, N.-H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotech. 19, 157–161 (2001).

    CAS  Google Scholar 

  115. Thomson, J. G. & Ow, D. W. Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44, 465–476 (2006).

    CAS  PubMed  Google Scholar 

  116. Wang, Y., Yau, Y. Y., Perkins-Balding, D. & Thomson, J. G. Recombinase technology: applications and possibilities. Plant Cell Rep. 30, 267–285 (2011).

    CAS  PubMed  Google Scholar 

  117. Thomason, L. C., Calendar, R. & Ow, D. W. Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site-specific recombination system. Mol. Genet. Genomics 265, 1031–1038 (2001).

    CAS  PubMed  Google Scholar 

  118. Moon, H. S. et al. Transgene excision in pollen using a codon optimized serine resolvase CinH–RS2 site-specific recombination system. Plant Mol. Biol. 75, 621–631 (2011).

    CAS  PubMed  Google Scholar 

  119. Petolino, J. F. et al. Zinc finger nuclease-mediated transgene deletion. Plant Mol. Biol. 73, 617–628 (2010).

    CAS  PubMed  Google Scholar 

  120. Zhou, Y., Yau, Y.-Y., Ow, D. W. & Wang, Y. Site-specific deletions in the tomato genome by the CinH–RS2 and ParA–MRS recombination systems. Plant Biotechnol. Rep. 6, 225–232 (2012).

    Google Scholar 

  121. Thomson, J. G. et al. ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgen. Res. 18, 237–248 (2009).

    CAS  Google Scholar 

  122. Thomson, J. G. et al. The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis. BMC Biotechnol. 12, 9 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Thomson, J. G., Chan, R., Thilmony, R., Yau, Y.-Y. & Ow, D. W. PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome. BMC Biotechnol. 10, 17 (2010).

    PubMed  PubMed Central  Google Scholar 

  124. Antunes, M. S., Smith, J. J., Jantz, D. & Medford, J. I. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnol. 12, 86 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Blechl, A., Lin, J., Shao, M., Thilmony, R. & Thomson, J. The Bxb1 recombinase mediates site-specific deletion in transgenic wheat. Plant Mol. Biol. Rep. 30, 1357–1366 (2012).

    CAS  Google Scholar 

  126. Kempe, K. et al. Transgene excision from wheat chromosome by phage phiC31 integrase. Plant Mol. Biol. 72, 673–387 (2010).

    CAS  PubMed  Google Scholar 

  127. Sang, Y., Millwood, R. J. & Stewart, C. N. Jr. Gene use restriction technologies for transgenic plant bioconfinement. Plant Biotechnol. J. 11, 649–658 (2013).

    CAS  PubMed  Google Scholar 

  128. Schwille, P. Bottom-up synthetic biology: engineering in a tinkerer's world. Science 333, 1252–1254 (2011).

    CAS  PubMed  Google Scholar 

  129. Antunes, M. S. et al. Programmable ligand detection system in plants through a synthetic signal transduction pathway. PLoS ONE 6, e16292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Borak, B., Ort, D. R. & Burbaum, J. J. Energy and carbon accounting to compare bioenergy crops. Curr. Opin. Biotechnol. 24, 369–375 (2013).

    CAS  PubMed  Google Scholar 

  131. Bradford, K. J. et al. Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nature Biotech. 23, 439–444 (2005).

    CAS  Google Scholar 

  132. Dhar, M. K., Kaul, S. & Kour, J. Towards the development of better crops by genetic transformation using engineered plant chromosomes. Plant Cell Rep. 30, 799–806 (2011).

    CAS  PubMed  Google Scholar 

  133. Hirano, N. et al. Site-specific recombination system based on actinophage TG1 integrase for gene integration into bacterial genomes. Appl. Microbiol. Biotechnol. 89, 1877–1884 (2011).

    CAS  PubMed  Google Scholar 

  134. Ghosh, P., Pannunzio, N. R. & Hatfull, G. F. Synapsis in phage Bxb1 integration: selection mechanism for the correct pair of recombination sites. J. Mol. Biol. 349, 331–348 (2005).

    CAS  PubMed  Google Scholar 

  135. Blake, W. et al. Pairwise selection assembly for sequence-independent construction of long-length DNA. Nucleic Acids Res. 38, 2594 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Cha-aim, K., Fukunaga, T., Hoshida, H. & Akada, R. Reliable fusion PCR mediated by GC-rich overlap sequences. Gene 434, 43–49 (2009).

    CAS  PubMed  Google Scholar 

  137. Quan, J. & Tian, J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4, e6441 (2009).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Haseloff, who provided much feedback on earlier drafts. They appreciate their respective universities for the freedom and resources to undertake this Review, including funding by Advanced Research Projects Agency-Energy to J.S.Y. and by the BioEnergy Science Center to C.N.S. The BioEnergy Science Center is a US Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The authors appreciate the work of multiple anonymous reviewers. They thank J. Hinds and M. Rudis for their assistance on various drafts of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Neal Stewart Jr.

Ethics declarations

Competing interests

J.S.Y. is a principal in a start-up company. C.N.S.Jr and J.S.Y. have received grants and contracts from the private sector, which has an interest in plant biotechnology.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Synthetic promoters that have been designed for the regulation of transgene expression in plants (PDF 227 kb)

Glossary

Agrobacterium tumefaciens-mediated transformation

The most common plant transformation method. It involves the transfer of genes of interest from A. tumefaciens vectors and the subsequent integration of these genes into plant nuclear genomes.

Biolistics

A commonly used transformation method in which high velocity microprojectiles coated with gene constructs are used to deliver genes into cells and tissues.

Targeted genome modification

The fusion of engineered DNA-binding proteins or domains with sequence specificities to effector domains that modify genetic sequences and/or gene expression.

Genome editing

Genome modification achieved by the induction of a double-strand break in a specific genome site, followed by DNA-break repair and the generation of desired modifications (gene disruption, addition or correction).

Homology-dependent gene silencing

A gene silencing phenomenon induced by homologous sequences at the transcriptional or post-transcriptional levels.

Zinc-finger proteins

(ZFPs). DNA-binding protein domains that consist of a tandem array of 2–9 zinc-fingers, each of which recognizes approximately three bases of DNA sequence.

Transcription activator-like effectors

(TALEs). Major virulence factors (containing an amino terminus, a unique type of central DNA-binding domain and a carboxyl terminus with the activation domain) that are secreted by the pathogenic Xanthomonas spp. bacterium when it infects plants. Their DNA-binding domains can be custom-designed to specifically bind to any DNA sequences.

Seamless assembly

The precise joining of DNA fragments without the addition of intervening or unwanted nucleotides at the junctions.

De novo DNA synthesis

The synthesis of continuous strands of DNA molecules using a laboratory instrument without the presence of pre-existing templates.

Plant artificial chromosome

An engineered non-integrating vector that harbours large amounts of DNA (including telomeres, origins of replication, a centromere and genes of interest) and is transmissible in cell division after transformation into plant cells.

Cre–loxP recombination system

A site-specific recombination system mediated by the Cre recombinase in a genome that contains pre-existing or pre-engineered loxP sites which are recognized by the Cre recombinase.

Gene stacking

The accumulation of multiple trangenes of interest into the same plant genome for stacked traits.

FLP–FRT systems

A recombination system in which the FLP recombinase specifically recognizes the FRT site and mediates excision of any sequence that is flanked by the FRT sites.

B chromosomes

Supernumerary or accessory chromosomes that are heterochromatic. They do not contain functional genes and do not to pair with A chromosomes at meiosis.

Zinc-finger nucleases

(ZFNs). Fusions of engineered zinc-finger arrays (that consist of 3–6 C2H2 fingers) to a non-specific DNA-cleavage domain of the FokI endonuclease.

TALE nucleases

(TALENs). Fusions of truncated TALEs (containing an amino terminus, a custom-designed DNA-binding domain and a carboxyl terminus with the activation domain being removed) to a non-specific DNA-cleavage domain of the FokI endonuclease.

Gene targeting

The incorporation of a transgene (or transgenes) of interest into one or more desired specific genomic loci for the permanent modification of plant genomes using homologous recombination (or another method) followed by the selection for a rare recombination event.

Agroinfiltration

The most common transient transformation method in plants which uses injection or vacuum infiltration to transform genes into cells and tissues using Agrobacterium tumefaciens.

Apomixes

The replacement of normal sexual reproduction by asexual reproduction without fertilization.

Cleistogamy

A phenomenon in which certain plants propagate using non-opening, self-pollinating flowers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Yuan, J. & Stewart Jr, C. Advanced genetic tools for plant biotechnology. Nat Rev Genet 14, 781–793 (2013). https://doi.org/10.1038/nrg3583

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3583

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research