[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biology of brain metastases—translation to new therapies

Abstract

Brain metastases are a serious obstacle in the treatment of patients with solid tumors and contribute to the morbidity and mortality of these cancers. It is speculated that the frequency of brain metastasis is increasing for several reasons, including improved systemic therapy and survival, and detection of metastases in asymptomatic patients. The lack of preclinical models that recapitulate the clinical setting and the exclusion of patients with brain metastases from most clinical trials have slowed progress. Molecular factors contributing to brain metastases are being elucidated, such as genes involved in cell adhesion, extravasation, metabolism, and cellular signaling. Furthermore, the role of the unique brain microenvironment is beginning to be explored. Although the presence and function of the blood–brain barrier in metastatic tumors is still poorly understood, it is likely that some tumor cells are protected from therapeutics by the blood–tumor barrier, creating a sanctuary site. This Review discusses what is known about the biology of brain metastases, what preclinical models are available to study the disease, and which novel therapeutic strategies are being studied in patients.

Key Points

  • Longer survival of patients and more-sensitive detection of metastatic disease by improved imaging modalities might contribute to the increased incidence of detected brain metastases

  • Novel preclinical models that more accurately represent clinical brain metastases and imaging techniques that allow study of the formation of brain metastases and their response to treatments are emerging

  • Brain metastases grow by co-opting existing blood vessels and/or by forming new blood vessels; the brain microenvironment promotes tumor cell survival, tumor growth and resistance to therapy

  • Although a lesser problem in large metastases, the blood–brain barrier (BBB) could prevent therapeutic access to micrometastases; strategies to enhance drug delivery across the BBB are under investigation

  • Differential expression of genes involved in intravasation and extravasation, metabolism, cell adhesion, and cellular signaling in brain-specific metastatic clones have been identified

  • Targeted therapies, including inhibitors of EGFR, HER2, PI3K and BRAF, have shown promise in the treatment of brain metastases, but require testing in randomized trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps in the formation of hematogenous metastasis to the brain.
Figure 2: Imaging brain metastases in preclinical models and patients.
Figure 3: Approaches to enhance drug delivery to the brain.

Similar content being viewed by others

References

  1. Gavrilovic, I. T. & Posner, J. B. Brain metastases: epidemiology and pathophysiology. J. Neurooncol. 75, 5–14 (2005).

    Article  PubMed  Google Scholar 

  2. Barnholtz-Sloan, J. S. et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 22, 2865–2872 (2004).

    Article  PubMed  Google Scholar 

  3. Schouten, L. J., Rutten, J., Huveneers, H. A. & Twijnstra, A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94, 2698–2705 (2002).

    Article  PubMed  Google Scholar 

  4. Delattre, J. Y., Krol, G., Thaler, H. T. & Posner, J. B. Distribution of brain metastases. Arch. Neurol. 45, 741–744 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Chang, E. L. et al. A pilot study of neurocognitive function in patients with one to three new brain metastases initially treated with stereotactic radiosurgery alone. Neurosurgery 60, 277–283 (2007).

    Article  PubMed  Google Scholar 

  6. Mehta, M. P. et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J. Clin. Oncol. 21, 2529–2536 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Gaspar, L. et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 37, 745–751 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Melisko, M. E., Moore, D. H., Sneed, P. K., De Franco, J. & Rugo, H. S. Brain metastases in breast cancer: clinical and pathologic characteristics associated with improvements in survival. J. Neurooncol. 88, 359–365 (2008).

    Article  PubMed  Google Scholar 

  9. Eichler, A. F. et al. Survival in patients with brain metastases from breast cancer: the importance of HER-2 status. Cancer 112, 2359–2367 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Eichler, A. F. et al. EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer. Neuro Oncol. 12, 1193–1199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patchell, R. A. et al. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med. 322, 494–500 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Vecht, C. J. et al. Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann. Neurol. 33, 583–590 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Andrews, D. W. et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363, 1665–1672 (2004).

    Article  PubMed  Google Scholar 

  14. Aoyama, H. et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295, 2483–2491 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Kocher, M. et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study. J. Clin. Oncol. 29, 134–141 (2011).

    Article  PubMed  Google Scholar 

  16. Antonadou, D. et al. Phase II randomized trial of temozolomide and concurrent radiotherapy in patients with brain metastases. J. Clin. Oncol. 20, 3644–3650 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Robinet, G. et al. Results of a phase III study of early versus delayed whole brain radiotherapy with concurrent cisplatin and vinorelbine combination in inoperable brain metastasis of non-small-cell lung cancer: Groupe Francais de Pneumo-Cancerologie (GFPC) Protocol 95–1. Ann. Oncol. 12, 59–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Verger, E. et al. Temozolomide and concomitant whole brain radiotherapy in patients with brain metastases: a phase II randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 61, 185–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hess, K. R. et al. Metastatic patterns in adenocarcinoma. Cancer 106, 1624–33 (2006).

    Article  PubMed  Google Scholar 

  21. Patel, J. K., Didolkar, M. S., Pickren, J. W. & Moore, R. H. Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am. J. Surg. 135, 807–10 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Article  Google Scholar 

  23. Ewing, J. Neoplastic Diseases. A Treatise on Tumors (W. B. Saunders Co., Philadelphia and London, 1928).

    Book  Google Scholar 

  24. Duda, D. G. et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl Acad. Sci. USA 107, 21677–21682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Lorger, M. & Felding-Habermann, B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am. J. Pathol. 176, 2958–2971 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carbonell, W. S., Ansorge, O., Sibson, N. & Muschel, R. The vascular basement membrane as “soil” in brain metastasis. PLoS ONE 4, e5857 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fitzgerald, D. P. et al. Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin. Exp. Metastasis 25, 799–810 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, M. & Olsson, Y. Reactions of astrocytes and microglial cells around hematogenous metastases of the human brain. Expression of endothelin-like immunoreactivity in reactive astrocytes and activation of microglial cells. J. Neurol. Sci. 134, 26–32 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Pukrop, T. et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58, 1477–1489 (2010).

    Article  PubMed  Google Scholar 

  32. He, B. P. et al. Differential reactions of microglia to brain metastasis of lung cancer. Mol. Med. 12, 161–170 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fidler, I. J. The role of the organ microenvironment in brain metastasis. Semin. Cancer Biol. 21, 107–112 (2011).

    Article  PubMed  Google Scholar 

  34. Langley, R. R. et al. Generation of an immortalized astrocyte cell line from H-2Kb-tsA58 mice to study the role of astrocytes in brain metastasis. Int. J. Oncol. 35, 665–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Lin, Q. et al. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia 12, 748–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, S. J. et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy Neoplasia 13, 286–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seike, T. et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin. Exp. Metastasis 28, 13–25 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Denkins, Y. et al. Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol. 6, 154–165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Menter, D. G., Herrmann, J. L. & Nicolson, G. L. The role of trophic factors and autocrine/paracrine growth factors in brain metastasis. Clin. Exp. Metastasis 13, 67–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature (in press).

  43. Jain, R. K. et al. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8, 610–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Ricci-Vitiani, L. et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, R. et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 829–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Di Tomaso, E. et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res. 71, 19–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soda, Y. et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl Acad. Sci. USA 108, 4274–4280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kusters, B. et al. Vascular endothelial growth factor-A165 induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res. 62, 341–345 (2002).

    CAS  PubMed  Google Scholar 

  49. Leenders, W. P. et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res. 10, 6222–6230 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Fidler, I. J., Yano, S., Zhang, R. D., Fujimaki, T. & Bucana, C. D. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol. 3, 53–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Yano, S. et al. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res. 60, 4959–4967 (2000).

    CAS  PubMed  Google Scholar 

  52. Kim, L. S., Huang, S., Lu, W., Lev, D. C. & Price, J. E. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin. Exp. Metastasis 21, 107–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. JuanYin, J. et al. Noninvasive imaging of the functional effects of anti-VEGF therapy on tumor cell extravasation and regional blood volume in an experimental brain metastasis model. Clin. Exp. Metastasis 26, 403–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Lorger, M., Krueger, J. S., O'Neal, M., Staflin, K. & Felding-Habermann, B. Activation of tumor cell integrin αvβ3 controls angiogenesis and metastatic growth in the brain. Proc. Natl Acad. Sci. USA 106, 10666–10671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hiratsuka, S. et al. C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc. Natl Acad. Sci. USA 108, 302–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Bullitt, E. et al. Vessel tortuosity and brain tumor malignancy: a blinded study. Acad. Radiol. 12, 1232–1240 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Feigin, I., Allen, L. B., Lipkin, L. & Gross, S. W. The endothelial hyperplasia of the cerebral blood vessels with brain tumors, and its sarcomatous transformation. Cancer 11, 264–277 (1958).

    Article  CAS  PubMed  Google Scholar 

  58. Yuan, F. et al. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54, 4564–4568 (1994).

    CAS  PubMed  Google Scholar 

  59. Hiratsuka, S. et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin upregulation. Proc. Natl Acad. Sci. USA 108, 3725–3730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Fukumura, D., Duda, D. G., Munn, L. L. & Jain, R. K. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cranmer, L. D., Trevor, K. T., Bandlamuri, S. & Hersh, E. M. Rodent models of brain metastasis in melanoma. Melanoma Res. 15, 325–356 (2005).

    Article  PubMed  Google Scholar 

  63. Cruz-Munoz, W., Man, S., Xu, P. & Kerbel, R. S. Development of a preclinical model of spontaneous human melanoma central nervous system metastasis. Cancer Res. 68, 4500–4505 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Mathieu, A. et al. Development of a chemoresistant orthotopic human nonsmall cell lung carcinoma model in nude mice: analyses of tumor heterogenity in relation to the immunohistochemical levels of expression of cyclooxygenase-2, ornithine decarboxylase, lung-related resistance protein, prostaglandin E synthetase, and glutathione-S-transferase-alpha (GST)-α, GST-μ, and GST-π. Cancer 101, 1908–1918 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, E. I. et al. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res. 67, 1472–1486 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Monsky, W. L. et al. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin. Cancer Res. 8, 1008–1013 (2002).

    CAS  PubMed  Google Scholar 

  67. Price, J. E. Metastasis from human breast cancer cell lines. Breast Cancer Res. Treat. 39, 93–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Price, J. E., Polyzos, A., Zhang, R. D. & Daniels, L. M. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 50, 717–721 (1990).

    CAS  PubMed  Google Scholar 

  69. Rye, P. D. et al. Brain metastasis model in athymic nude mice using a novel MUC1-secreting human breast-cancer cell line, MA11. Int. J. Cancer 68, 682–687 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Yoneda, T., Williams, P. J., Hiraga, T., Niewolna, M. & Nishimura, R. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J. Bone Miner. Res. 16, 1486–1495 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, R. D., Fidler, I. J. & Price, J. E. Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion Metastasis 11, 204–215 (1991).

    CAS  PubMed  Google Scholar 

  72. Fidler, I. J., Schackert, G., Zhang, R. D., Radinsky, R. & Fujimaki, T. The biology of melanoma brain metastasis. Cancer Metastasis Rev. 18, 387–400 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Palmieri, D. et al. HER-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res. 67, 4190–4198 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Gril, B. et al. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J. Natl Cancer Inst. 100, 1092–1103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R. K. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416, 279–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Chung, E. et al. Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS ONE 4, e8316 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Alterman, A. L. & Stackpole, C. W. B16 melanoma spontaneous brain metastasis: occurrence and development within leptomeninges blood vessels. Clin. Exp. Metastasis 7, 15–23 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lockman, P. R. et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in mouse brain metastases of breast cancer. Clin. Cancer Res. 16, 5664–5678 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer 2, 11–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Anderson, S. A. & Frank, J. A. MRI of mouse models of neurological disorders. NMR Biomed. 20, 200–215 (2007).

    Article  PubMed  Google Scholar 

  83. Frank, J. A. et al. Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 6, 621–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med. 56, 1001–1010 (2006).

    Article  PubMed  Google Scholar 

  85. Song, H. T. et al. Quantitative T2* imaging of metastatic human breast cancer to brain in the nude rat at 3 T. NMR Biomed. 24, 325–334 (2011).

    Article  PubMed  Google Scholar 

  86. Song, H. T. et al. Rat model of metastatic breast cancer monitored by MRI at 3 tesla and bioluminescence imaging with histological correlation. J. Transl. Med. 7, 88 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Neuwelt, E. A. Mechanisms of disease: the blood-brain barrier. Neurosurgery 54, 131–140 (2004).

    Article  PubMed  Google Scholar 

  89. Deeken, J. F. & Loscher, W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin. Cancer Res. 13, 1663–1674 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Fukumura, D. et al. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 61, 6020–6024 (2001).

    CAS  PubMed  Google Scholar 

  91. Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Monsky, W. L. et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59, 4129–4135 (1999).

    CAS  PubMed  Google Scholar 

  93. Zhang, R. D., Price, J. E., Fujimaki, T., Bucana, C. D. & Fidler, I. J. Differential permeability of the blood-brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice. Am. J. Pathol. 141, 1115–1124 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Regina, A. et al. Multidrug resistance in brain tumors: roles of the blood-brain barrier. Cancer Metastasis Rev. 20, 13–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Patchell, R. A. et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280, 1485–1489 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. de Boer, A. G. & Gaillard, P. J. Strategies to improve drug delivery across the blood-brain barrier. Clin. Pharmacokinet. 46, 553–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Lillis, A. P., Van Duyn, L. B., Murphy-Ullrich, J. E. & Strickland, D. K. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev. 88, 887–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Pardridge, W. M. Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug. Chem. 19, 1327–1338 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Bu, G., Maksymovitch, E. A., Geuze, H. & Schwartz, A. L. Subcellular localization and endocytic function of low density lipoprotein receptor-related protein in human glioblastoma cells. J. Biol. Chem. 269, 29874–29882 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Demeule, M. et al. High transcytosis of melanotransferrin (P97) across the blood-brain barrier. J. Neurochem. 83, 924–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Pan, W. et al. Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J. Cell Sci. 117, 5071–5078 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. US National Library of Medicine. Clinicaltrials.gov [online], (2010).

  103. US National Library of Medicine. Clinicaltrials.gov [online], (2010).

  104. Regina, A. et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br. J. Pharmacol. 155, 185–197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thomas, F. C. et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm. Res. 26, 2486–2494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. DeAngelis, L. M. et al. The combined use of radiation therapy and lonidamine in the treatment of brain metastases. J. Neurooncol. 7, 241–247 (1989).

    Article  CAS  PubMed  Google Scholar 

  107. Eyre, H. J. et al. Randomized trial of radiotherapy versus radiotherapy plus metronidazole for the treatment metastatic cancer to brain. A Southwest Oncology Group study. J. Neurooncol. 2, 325–330 (1984).

    Article  CAS  PubMed  Google Scholar 

  108. Komarnicky, L. T. et al. A randomized phase III protocol for the evaluation of misonidazole combined with radiation in the treatment of patients with brain metastases (RTOG-7916). Int. J. Radiat. Oncol. Biol. Phys. 20, 53–58 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Mehta, M. P. et al. Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non-small-cell lung cancer patients with brain metastases: results of a phase III trial. Int. J. Radiat. Oncol. Biol. Phys. 73, 1069–1076 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Phillips, T. L., Scott, C. B., Leibel, S. A., Rotman, M. & Weigensberg, I. J. Results of a randomized comparison of radiotherapy and bromodeoxyuridine with radiotherapy alone for brain metastases: report of RTOG trial 89-05 Int. J. Radiat. Oncol. Biol. Phys. 33, 339–348 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Suh, J. H. et al. Phase III study of efaproxiral as an adjunct to whole-brain radiation therapy for brain metastases. J. Clin. Oncol. 24, 106–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Neuhaus, T. et al. A phase III trial of topotecan and whole brain radiation therapy for patients with CNS-metastases due to lung cancer. Br. J. Cancer 100, 291–297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Baschnagel, A. et al. Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol. Cancer Ther. 8, 1589–1595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Palmieri, D. et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin. Cancer Res. 15, 6148–6157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. US National Library of Medicine. Clinicaltrials.gov [online], (2011).

  116. US National Library of Medicine. Clinicaltrials.gov [online], (2010).

  117. Besse, B. et al. Bevacizumab safety in patients with central nervous system metastases. Clin. Cancer Res. 16, 269–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Socinski, M. A. et al. Safety of bevacizumab in patients with non-small-cell lung cancer and brain metastases. J. Clin. Oncol. 27, 5255–5261 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Polikoff, J. et al. Safety of bevacizumab (Bv) therapy in combination with chemotherapy in subjects with non-small cell lung cancer (NSCLC) treated on ATLAS [abstract]. J. Clin. Oncol. 26 (15 Suppl.), a8079 (2008).

    Article  Google Scholar 

  120. De Braganca, et al. Efficacy and safety of bevacizumab in active brain metastases from non-small cell lung cancer. J. Neurooncol. 100, 443–447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Eichler, A. F. et al. A phase I study of cediranib plus whole-brain radiation therapy in patients with brain metastases from non-small cell lung cancer [abstract]. J. Clin. Oncol. 28 (15 Suppl.), TPS177 (2010).

    Article  Google Scholar 

  122. Ceresoli, G. L. et al. Gefitinib in patients with brain metastases from non-small-cell lung cancer: a prospective trial. Ann. Oncol. 15, 1042–1047 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Wu, C. et al. Gefitinib as palliative therapy for lung adenocarcinoma metastatic to the brain. Lung Cancer 57, 359–364 (2007).

    Article  PubMed  Google Scholar 

  124. Fekrazad, M. H., Ravindranathan, M. & Jones, D. V. Jr. Response of intracranial metastases to erlotinib therapy. J. Clin. Oncol. 25, 5024–5026 (2007).

    Article  PubMed  Google Scholar 

  125. Lai, C. S., Boshoff, C., Falzon, M. & Lee, S. M. Complete response to erlotinib treatment in brain metastases from recurrent NSCLC. Thorax 61, 91 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Popat, S. et al. Recurrent responses to non-small cell lung cancer brain metastases with erlotinib. Lung Cancer 56, 135–137 (2007).

    Article  PubMed  Google Scholar 

  127. Kim, J. E. et al. Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer 65, 351–354 (2009).

    Article  PubMed  Google Scholar 

  128. Paz-Ares, L. et al. Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 24, 1428–1434 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Leyland-Jones, B. Human epidermal growth factor receptor 2-positive breast cancer and central nervous system metastases. J. Clin. Oncol. 27, 5278–5286 (2009).

    Article  PubMed  Google Scholar 

  131. Lin, N. U. & Winer, E. P. Brain metastases: the HER2 paradigm. Clin. Cancer Res. 13, 1648–1655 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, L., Sullivan, P. S., Goodman, J. C., Gunaratne, P. H. & Marchetti, D. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res. 71, 645–654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lin, N. U. et al. Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol. 26, 1993–1999 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Lin, N. U. et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin. Cancer Res. 15, 1452–1459 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Cameron, D. et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res. Treat. 112, 533–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. US National Library of Medicine. Clinicaltrials.gov [online], (2011).

  137. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Long, G. V. et al. Phase 1/2 study of GSK2118436, a selective inhibitor of V600 mutant (MUT) BRAF kinase; evidence of activity in melanoma brain metastases (METS) [abstract]. Ann. Oncol. 21, viii12 (2010).

    Article  Google Scholar 

  139. Felding-Habermann, B. et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl Acad. Sci. USA 98, 1853–1858 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Palmieri, D. et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol. Cancer Res. 7, 1438–1445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ray, P. S. et al. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res. 70, 3870–3876 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Nguyen, D. X. et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Grinberg-Rashi, H. et al. The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin. Cancer Res. 15, 1755–1761 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Xie, T. X. et al. Activation of Stat3 in human melanoma promotes brain metastasis. Cancer Res. 66, 3188–3196 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Nam, D. H. et al. Activation of notch signaling in a xenograft model of brain metastasis. Clin. Cancer Res. 14, 4059–4066 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Siegal, T. et al. Alteration of blood-brain-CSF barrier in experimental meningeal carcinomatosis. A morphologic and adriamycin-penetration study. J. Neurooncol. 4, 233–242 (1987).

    Article  CAS  PubMed  Google Scholar 

  147. Schabet, M. & Herrlinger, U. Animal models of leptomeningeal metastasis. J. Neurooncol. 38, 199–205 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Schackert, G., Price, J. E., Bucana, C. D. & Fidler, I. J. Unique patterns of brain metastasis produced by different human carcinomas in athymic nude mice. Int. J. Cancer 44, 892–897 (1989).

    Article  CAS  PubMed  Google Scholar 

  149. Broder, H., Anderson, A., Kremen, T. J., Odesa, S. K. & Liau, L. M. MART-1 adenovirus-transduced dendritic cell immunization in a murine model of metastatic central nervous system tumor. J. Neurooncol. 64, 21–30 (2003).

    PubMed  Google Scholar 

  150. Schackert, G. & Fidler, I. J. Development of in vivo models for studies of brain metastasis. Int. J. Cancer 41, 589–594 (1988).

    Article  CAS  PubMed  Google Scholar 

  151. Schackert, G. & Fidler, I. J. Site-specific metastasis of mouse melanomas and a fibrosarcoma in the brain or meninges of syngeneic animals. Cancer Res. 48, 3478–3484 (1988).

    CAS  PubMed  Google Scholar 

  152. Yang, M. et al. Genetically fluorescent melanoma bone and organ metastasis models. Clin. Cancer Res. 5, 3549–3559 (1999).

    CAS  PubMed  Google Scholar 

  153. Muldoon, L. L. et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J. Clin. Oncol. 25, 2295–2305 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Bellavance, M. A., Blanchette, M. & Fortin, D. Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS J. 10, 166–177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gregor, A. et al. Phase II studies of RMP-7 and carboplatin in the treatment of recurrent high grade glioma. RMP-7 European Study Group. J. Neurooncol. 44, 137–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Matsukado, K. et al. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery 39, 125–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Prados, M. D. et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro Oncol. 5, 96–103 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jones, A. R. & Shusta, E. V. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm. Res. 24, 1759–1771 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Joo, K. M. et al. Oral paclitaxel chemotherapy for brain tumors: ideal combination treatment of paclitaxel and p-glycoprotein inhibitor. Oncol. Rep. 19, 17–23 (2008).

    CAS  PubMed  Google Scholar 

  160. Joo, K. M. et al. Response of brain specific microenvironment to p-glycoprotein inhibitor: an important factor determining therapeutic effect of p-glycoprotein inhibitor on brain metastatic tumors. Int. J. Oncol. 33, 705–712 (2008).

    CAS  PubMed  Google Scholar 

  161. Bauer, B., Hartz, A. M., Fricker, G. & Miller, D. S. Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp. Biol. Med. 230, 118–127 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Engelman, S. Goel, L. Xu, I. J. Fidler, R. S. Kerbel, W. Cruz-Munoz and S. Mohla for their helpful comments on the manuscript. This work was supported by the National Institutes of Health grants P01-CA080124 (R. K. Jain and D. Fukumura), R01-CA085140, R01-CA115767 and R01-CA126642 (R. K. Jain), R01-CA096915 (D. Fukumura), R21-CA135605 and U01-CA062490 (A. F. Eichler), a Federal Share Income Grant (R. K. Jain and D. Fukumura), T32-CA073479 (D. P. Kodak) and Department of Defense Breast Cancer Research Innovator Award W81XWH-10-1-0016 (R. K. Jain). E. Chung was supported by a Tosteson postdoctoral fellowship award from the Massachusetts Biomedical Research Corporation. E. Chung also acknowledges support from his current institute: Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

A. F. Eichler and R. K. Jain contributed equally to the preparation of this manuscript. All authors contributed to researching data for the article, discussions of content, writing of the manuscript, and to reviewing and editing of the article before submission.

Corresponding author

Correspondence to Rakesh K. Jain.

Ethics declarations

Competing interests

R. K. Jain declares receiving consulting fees from Astellas, AstraZeneca, Dyax, Enlight Biosciences, Genzyme, Millenium, Noxxon and SynDevRx; lecture fees from MPM Capital; grant support from Dyax, AstraZeneca/MedImmune and Roche; and owning equity in Enlight Biosciences and SynDevRx. Other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichler, A., Chung, E., Kodack, D. et al. The biology of brain metastases—translation to new therapies. Nat Rev Clin Oncol 8, 344–356 (2011). https://doi.org/10.1038/nrclinonc.2011.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.58

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer