Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults and children. The treatment of TBI in the acute phase has improved substantially; however, the prevention and management of long-term complications remain a challenge. Blood–brain barrier (BBB) breakdown has often been documented in patients with TBI, but the role of such vascular pathology in neurological dysfunction has only recently been explored. Animal studies have demonstrated that BBB breakdown is involved in the initiation of transcriptional changes in the neurovascular network that ultimately lead to delayed neuronal dysfunction and degeneration. Brain imaging data have confirmed the high incidence of BBB breakdown in patients with TBI and suggest that such pathology could be used as a biomarker in the clinic and in drug trials. Here, we review the neurological consequences of TBI, focusing on the long-term complications of such injuries. We present the clinical evidence for involvement of BBB breakdown in TBI and examine the primary and secondary mechanisms that underlie such pathology. We go on to consider the consequences of BBB injury, before analyzing potential mechanisms linking vascular pathology to neuronal dysfunction and degeneration, and exploring possible targets for treatment. Finally, we highlight areas for future basic research and clinical studies into TBI.
Key Points
-
Breakdown of the blood–brain barrier (BBB) follows traumatic brain injury (TBI) and can last from several days to years after the acute event
-
Secondary BBB breakdown—initiated within hours or days of injury—is associated with processes such as edema, neuroinflammation and cell death, and is considered to be potentially treatable
-
Experimental data indicate that BBB breakdown contributes to the clinical outcome of long-term TBI complications, such as Alzheimer disease, cognitive and psychological impairments, and epilepsy
-
A pressing need exists for new, practical and efficient diagnostic tools for the rapid detection and monitoring of BBB status
-
No accepted therapeutic protocols are available for the prevention or treatment of secondary damage resulting from BBB breakdown, although emergent treatment strategies aimed at modifying BBB-mediated injury are showing promise
-
Further basic and clinical research directed at the pathophysiology of BBB breakdown following TBI might provide novel targets for clinical intervention
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Langlois, J. A., Rutland-Brown, W. & Thomas, K. E. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention [online], (2006).
Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J. & Sniezek, J. E. Traumatic brain injury in the United States: a public health perspective. J. Head Trauma Rehabil. 14, 602–615 (1999).
Finkelstein, E. A., Corso, P. S. & Miller, T. R. Incidence and Economic Burden of Injuries in the United States (Oxford University Press, Oxford, 2006).
Badjatia, N. et al. Guidelines for prehospital management of traumatic brain injury 2nd edition. Prehosp. Emerg. Care 12 (Suppl. 1), S1–S52 (2008).
Ghajar, J. Traumatic brain injury. Lancet 356, 923–929 (2000).
Maas, A. I. et al. EBIC-guidelines for management of severe head injury in adults. European Brain Injury Consortium. Acta Neurochir. (Wien) 139, 286–294 (1997).
Maas, A. I., Marmarou, A., Murray, G. D., Teasdale, S. G. & Steyerberg, E. W. Prognosis and clinical trial design in traumatic brain injury: the IMPACT study. J. Neurotrauma 24, 232–238 (2007).
Narayan, R. K. et al. Clinical trials in head injury. J. Neurotrauma 19, 503–557 (2002).
Maas, A. I., Stocchetti, N. & Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 7, 728–741 (2008).
Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).
Adelson, P. D., Whalen, M. J., Kochanek, P. M., Robichaud, P. & Carlos, T. M. Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report. Acta Neurochir. Suppl. 71, 104–106 (1998).
Hawkins, B. T. & Davis, T. P. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57, 173–185 (2005).
Sharma, H. S. et al. Antibodies to serotonin attenuate closed head injury induced blood brain barrier disruption and brain pathology. Ann. NY Acad. Sci. 1122, 295–312 (2007).
Tomkins, O. et al. Blood–brain barrier disruption in post-traumatic epilepsy. J. Neurol. Neurosurg. Psychiatry 79, 774–777 (2008).
Unterberg, A. W., Stover, J., Kress, B. & Kiening, K. L. Edema and brain trauma. Neuroscience 129, 1021–1029 (2004).
van Vliet, E. A. et al. Blood–brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130, 521–534 (2007).
Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).
Tomkins, O. et al. Frequent blood–brain barrier disruption in the human cerebral cortex. Cell. Mol. Neurobiol. 21, 675–691 (2001).
Korn, A., Golan, H., Melamed, I., Pascual-Marqui, R. & Friedman, A. Focal cortical dysfunction and blood–brain barrier disruption in patients with postconcussion syndrome. J. Clin. Neurophysiol. 22, 1–9 (2005).
Strbian, D. et al. The blood–brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 153, 175–181 (2008).
Barzó, P., Marmarou, A., Fatouros, P., Corwin, F. & Dunbar, J. Magnetic resonance imaging-monitored acute blood–brain barrier changes in experimental traumatic brain injury. J. Neurosurg. 85, 1113–1121 (1996).
Csuka, E. et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J. Neuroimmunol. 101, 211–221 (1999).
Morganti-Kossmann, M. C. et al. TGF-β is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood–brain barrier function. J. Neurotrauma 16, 617–628 (1999).
Shapira, Y., Setton, D., Artru, A. A. & Shohami, E. Blood–brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth. Analg. 77, 141–148 (1993).
Cernak, I. Animal models of head trauma. NeuroRx 2, 410–422 (2005).
Morales, D. M. et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 136, 971–989 (2005).
Whetstone, W. D., Hsu, J. Y., Eisenberg, M., Werb, Z. & Noble-Haeusslein, L. J. Blood–spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J. Neurosci. Res. 74, 227–239 (2003).
Başkaya, M. K., Rao, A. M., Doğan, A., Donaldson, D. & Dempsey, R. J. The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci. Lett. 226, 33–36 (1997).
Kirchhoff, C. et al. Intrathecal and systemic concentration of NT-proBNP in patients with severe traumatic brain injury. J. Neurotrauma 23, 943–949 (2006).
Lenzlinger, P. M., Marx, A., Trentz, O., Kossmann, T. & Morganti-Kossmann, M. C. Prolonged intrathecal release of soluble Fas following severe traumatic brain injury in humans. J. Neuroimmunol. 122, 167–174 (2002).
Stahel, P. F. et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood–brain barrier dysfunction in patients with traumatic brain injury. J. Neurotrauma 18, 773–781 (2001).
Rodríguez-Baeza, A., Reina- de la Torre, F., Poca, A., Martí, M. & Garnacho, A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 273, 583–593 (2003).
Bouma, G. J. et al. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J. Neurosurg. 77, 360–368 (1992).
Robertson, C. S., Contant, C. F., Gokaslan, Z. L., Narayan, R. K. & Grossman, R. G. Cerebral blood flow, arteriovenous oxygen difference, and outcome in head injured patients. J. Neurol. Neurosurg. Psychiatry 55, 594–603 (1992).
Fischer, S., Wobben, M., Marti, H. H., Renz, D. & Schaper, W. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc. Res. 63, 70–80 (2002).
Lee, J. H. et al. Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J. Neurosurg. 87, 221–233 (1997).
Rangel-Castilla, L., Gasco, J., Nauta, H. J., Okonkwo, D. O. & Robertson, C. S. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg. Focus 25, E7 (2008).
Cherian, L., Hlatky, R. & Robertson, C. S. Nitric oxide in traumatic brain injury. Brain Pathol. 14, 195–201 (2004).
Nekludov, M., Antovic, J., Bredbacka, S. & Blombäck, M. Coagulation abnormalities associated with severe isolated traumatic brain injury: cerebral arterio-venous differences in coagulation and inflammatory markers. J. Neurotrauma 24, 174–180 (2007).
Muellner, A. et al. Microvascular basal lamina antigen loss after traumatic brain injury in the rat. J. Neurotrauma 20, 745–754 (2003).
Servadei, F. et al. Traumatic subarachnoid hemorrhage: demographic and clinical study of 750 patients from the European brain injury consortium survey of head injuries. Neurosurgery 50, 261–267 (2002).
Faden, A. I., Demediuk, P., Panter, S. S. & Vink, R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244, 798–800 (1989).
Teichberg, V. I., Cohen- Kashi-Malina, K., Cooper, I. & Zlotnik, A. Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 158, 301–308 (2009).
Nag, S., Venugopalan, R. & Stewart, D. J. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol. 114, 459–469 (2007).
Nag, S., Manias, J. L. & Stewart, D. J. Expression of endothelial phosphorylated caveolin-1 is increased in brain injury. Neuropathol. Appl. Neurobiol. 35, 417–426 (2009).
Zhao, J., Moore, A. N., Redell, J. B. & Dash, P. K. Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J. Neurosci. 27, 10240–10248 (2007).
Yeung, D., Manias, J. L., Stewart, D. J. & Nag, S. Decreased junctional adhesion molecule-A expression during blood–brain barrier breakdown. Acta Neuropathol. 115, 635–642 (2008).
Dore-Duffy, P. et al. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc. Res. 60, 55–69 (2000).
Nag, S., Takahashi, J. L. & Kilty, D. W. Role of vascular endothelial growth factor in blood–brain barrier breakdown and angiogenesis in brain trauma. J. Neuropathol. Exp. Neurol. 56, 912–921 (1997).
Infante-Duarte, C., Waiczies, S., Wuerfel, J. & Zipp, F. New developments in understanding and treating neuroinflammation. J. Mol. Med. 86, 975–985 (2008).
Oby, E. & Janigro, D. The blood–brain barrier and epilepsy. Epilepsia 47, 1761–1774 (2006).
Skaper, S. D. The brain as a target for inflammatory processes and neuroprotective strategies. Ann. NY Acad. Sci. 1122, 23–34 (2007).
Morganti-Kossmann, M. C., Satgunaseelan, L., Bye. N. & Kossmann, T. Modulation of immune response by head injury. Injury 38, 1392–1400 (2007).
Holmin, S. & Mathiesen, T. Intracerebral administration of interleukin-1β and induction of inflammation, apoptosis, and vasogenic edema. J. Neurosurg. 92, 108–120 (2000).
Holmin, S., Söderlund, J., Biberfeld, P. & Mathiesen, T. Intracerebral inflammation after human brain contusion. Neurosurgery 42, 291–298 (1998).
Balabanov, R. et al. Endothelial cell activation following moderate traumatic brain injury. Neuro. Res. 23, 175–182 (2001).
Chen, G., Shi, J., Hu, Z. & Hang, C. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm. 2008, 716458 (2008).
Pleines, U. E., Stover, J. F., Kossmann, T., Trentz, O. & Morganti-Kossman, M. C. Soluble ICAM-1 in CSF coincides with the extent of cerebral damage in patients with severe traumatic brain injury. J. Neurotrauma 15, 399–409 (1998).
Aihara, N., Hall, J. J., Pitts, L. H., Fukuda, K. & Noble, L. J. Altered immunoexpression of microglia and macrophages after mild head injury. J. Neurotrauma 12, 53–63 (1995).
Stamatovic, S. M., Dimitrijevic, O. B., Keep, R. F. & Andjelkovic, A. V. Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir. Suppl. 96, 444–450 (2006).
Allan, S. M. & Rothwell, N. J. Cytokines and acute neurodegeneration. Nat. Rev. Neurosci. 2, 734–744 (2001).
Lucas, S. M., Rothwell, N. J. & Gibson, R. M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147 (Suppl. 1), S232–S340 (2006).
Harkness, K. A. et al. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 123, 698–709 (2000).
Suehiro, E. et al. Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy. J. Neurotrauma 21, 1706–1711 (2004).
Lenzlinger, P. M., Morganti-Kossmann, M. C., Laurer, H. L. & McIntosh, T. K. The duality of the inflammatory response to traumatic brain injury. Mol. Neurobiol. 24, 169–181 (2001).
Allan, S. M., Tyrrell, P. J. & Rothwell, N. J. Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 5, 629–640 (2005).
Fabene, P. F. et al. A role for leukocyte–endothelial adhesion mechanisms in epilepsy. Nat. Med. 14, 1377–1383 (2008).
Vezzani, A., Balosso, S. & Ravizza, T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav. Immun. 22, 797–803 (2008).
Cernak, I., Stoica, B., Byrnes, K. R., Di Giovanni, S. & Faden, A. I. Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4, 1286–1293 (2005).
Clark, R. S. et al. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13, 813–821 (1999).
Hoane, M. R., Kaplan, S. A. & Ellis, A. L. The effects of nicotinamide on apoptosis and blood–brain barrier breakdown following traumatic brain injury. Brain Res. 1125, 185–193 (2006).
Rink, A. et al. Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am. J. Pathol. 147, 1575–1583 (1995).
Uzan, M. et al. Evaluation of apoptosis in cerebrospinal fluid of patients with severe head injury. Acta Neurochir. (Wien) 148, 1157–1164 (2006).
Yakovlev, A. G. et al. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17, 7415–7424 (1997).
Zhang, X., Chen, Y., Jenkins, L. W., Kochanek, P. M. & Clark, R. S. Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit. Care 9, 66–75 (2005).
Nag, S., Papneja, T., Venugopalan, R. & Stewart, D. J. Increased angiopoietin2 expression is associated with endothelial apoptosis and blood–brain barrier breakdown. Lab. Invest. 85, 1189–1198 (2005).
Li, Y. Q., Chen, P., Haimovitz-Friedman, A., Reilly, R. M. & Wong, C. S. Endothelial apoptosis initiates acute blood–brain barrier disruption after ionizing radiation. Cancer Res. 63, 5950–5956 (2003).
Tomkins, O. et al. Blood–brain barrier disruption results in delayed functional and structural alterations in the rat neocortex. Neurobiol. Dis. 25, 367–377 (2007).
Di Giovanni, S. et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc. Natl Acad. Sci. USA 102, 8333–8338 (2005).
Williams, S. et al. In situ DNA fragmentation occurs in white matter up to 12 months after head injury in man. Acta Neuropathol. 102, 581–590 (2001).
Cacheaux, L. P. et al. Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J. Neurosci. 29, 8927–8935 (2009).
Ruttan, L., Martin, K., Liu, A., Colella, B. & Green, R. E. Long-term cognitive outcome in moderate to severe traumatic brain injury: a meta-analysis examining timed and untimed tests at 1 and 4.5 or more years after injury. Arch. Phys. Med. Rehabil. 89 (12 Suppl.), S69–S76 (2008).
Annegers, J. F., Hauser, W. A., Coan, S. P. & Rocca, W. A. A population-based study of seizures after traumatic brain injuries. N. Engl. J. Med. 338, 20–24 (1998).
Herman, S. T. Epilepsy after brain insult: targeting epileptogenesis. Neurology 59, S21–S26 (2002).
Annegers, J. F. & Coan, S. P. The risks of epilepsy after traumatic brain injury. Seizure 9, 453–457 (2000).
Pavlovsky, L. et al. Persistent BBB disruption may underlie alpha interferon-induced seizures. J. Neurol. 252, 42–46 (2005).
Wang, H. C. et al. Factors predictive of outcome in posttraumatic seizures. J. Trauma 64, 883–888 (2008).
Ivens, S. et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130, 535–547 (2007).
David, Y. et al. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J. Neurosci. 29, 10588–10599 (2009).
Floyd, C. L. & Lyeth, B. G. In Progress in Brain Research Neurotrauma: New Insights into Pathology and Treatment (eds Weber, J. T. & Maas, A. I. R.) 61–79 (Elsevier, Amsterdam, 2007).
Heinemann, U. et al. Alterations of glial cell function in temporal lobe epilepsy. Epilepsia 41 (Suppl. 6), S185–S189 (2000).
Jabs, R., Seifert, G. & Steinhauser, C. Astrocytic function and its alteration in the epileptic brain. Epilepsia 49 (Suppl. 2), S3–S12 (2008).
Seifert, G., Schilling, K. & Steinhauser, C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat. Rev. Neurosci. 7, 194–206 (2006).
Seiffert, E. et al. Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J. Neurosci. 24, 7829–7836 (2004).
Tian, G. F. et al. An astrocytic basis of epilepsy. Nat. Med. 11, 973–981 (2005).
Filosa, A. et al. Neuron–glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat. Neurosci. 12, 1285–1292 (2009).
Henneberger, C., Papouin, T., Oliet, S. H. & Rusakov, D. A. Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232–236 (2010).
Wetherington, J., Serrano, G. & Dingledine, R. Astrocytes in the epileptic brain. Neuron 58, 168–178 (2008).
Ivens, S. et al. Blood–brain barrier breakdown as a novel mechanism underlying cerebral hyperperfusion syndrome. J. Neurol. 257, 615–620 (2010).
Marchi, N. et al. Seizure-promoting effect of blood–brain barrier disruption. Epilepsia 48, 732–742 (2007).
Friedman, A., Kaufer, D. & Heinemann, U. Blood–brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res. 85, 142–149 (2009).
D'Ambrosio, R., Maris, D. O., Grady, M. S., Winn, H. R. & Janigro, D. Impaired K+ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J. Neurosci. 19, 8152–8162 (1999).
Santhakumar, V., Voipio, J., Kaila, K. & Soltesz, I. Post-traumatic hyperexcitability is not caused by impaired buffering of extracellular potassium. J. Neurosci. 23, 5865–5876 (2003).
Viviani, B. et al. Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700 (2003).
Vezzani, A. & Baram, T. Z. New roles for interleukin-1 beta in the mechanisms of epilepsy. Epilepsy Curr. 7, 45–50 (2007).
Ferrari, C. C. et al. Reversible demyelination, blood–brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain. Am. J. Pathol. 165, 1827–1837 (2004).
Gursoy-Ozdemir, Y. et al. Cortical spreading depression activates and upregulates MMP-9. J. Clin. Invest. 113, 1447–1455 (2004).
Vezzani, A. & Granata, T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46, 1724–1743 (2005).
Guo, Z. et al. Head injury and the risk of AD in the MIRAGE study. Neurology 54, 1316–1323 (2000).
Jellinger, K., Paulus, W., Wrocklage, C. & Litvan, I. Traumatic brain injury as a risk factor for Alzheimer disease. Comparison of two retrospective autopsy cohorts with evaluation of ApoE genotype. BMC Neurol. 1, 3 (2001).
Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451, 720–724 (2008).
Emmerling, M. R. et al. Traumatic brain injury elevates the Alzheimer's amyloid peptide Aβ42 in human CSF. A possible role for nerve cell injury. Ann. NY Acad. Sci. 903, 118–122 (2000).
Saunders, A. M. et al. Association of apolipoprotein E allele ε4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).
Martel, C. L. et al. Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood–brain barrier transport of circulating Alzheimer's amyloid β. J. Neurochem. 69, 1995–2004 (1997).
Zhou, W. et al. Meta-analysis of APOE4 allele and outcome after traumatic brain injury. J. Neurotrauma 25, 279–290 (2008).
Moran, L. M. et al. Apolipoprotein E4 as a predictor of outcomes in pediatric mild traumatic brain injury. J. Neurotrauma 26, 1489–1495 (2009).
Yamada, K. et al. The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid β peptides in an in vitro model of the blood–brain barrier cells. J. Biol. Chem. 283, 34554–34562 (2008).
Deane, R. et al. RAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003).
Yan, F. L., Zheng, Y. & Zhao, F. D. Effects of ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta Neuropathol. 116, 529–535 (2008).
Donahue, J. et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol. 112, 405–415 (2006).
Jeynes, B. & Provias, J. Evidence for altered LRP/RAGE expression in Alzheimer lesion pathogenesis. Curr. Alzheimer Res. 5, 432–437 (2008).
Ikonomovic, M. D. et al. Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 190, 192–203 (2004).
Cirrito, J. R. et al. Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo. Neuron 58, 42–51 (2008).
Sagare, A. et al. Clearance of amyloid-β by circulating lipoprotein receptors. Nat. Med. 13, 1029–1031 (2007).
Chen, X., Gawryluk, J., Wagener, J., Ghribi, O. & Geiger, J. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. J. Neuroinflammation 5, 12 (2008).
Unterberg, A., Wahl, M. & Baethmann, A. Effects of bradykinin on permeability and diameter of pial vessels in vivo. J. Cereb. Blood Flow Metab. 4, 574–585 (1984).
Plesnila, N. et al. Role of bradykinin B2 receptors in the formation of vasogenic brain edema in rats. J. Neurotrauma 18, 1049–1058 (2001).
Ivashkova, Y. et al. Bradykinin B2 receptor antagonism with LF 18–1505T reduces brain edema and improves neurological outcome after closed head trauma in rats. J. Trauma 61, 879–885 (2006).
Stover, J. F., Dohse, N. K. & Unterberg, A. W. Bradykinin 2 receptor antagonist LF 16–0687Ms reduces posttraumatic brain edema. Acta Neurochir. Suppl. 76, 171–175 (2000).
Narotam, P. K. et al. Traumatic brain contusions: a clinical role for the kinin antagonist CP-0127. Acta Neurochir. (Wien) 140, 793–803 (1998).
Ker, K. & Blackhall, K. Bradykinin beta-2 receptor antagonists for acute traumatic brain injury. Cochrane Database of Systematic Reviews, Issue 1. Art. No.:CD006686. doi: 10.1002/14651858.CD006686.pub2 (2008).
Nag, S. The blood–brain barrier and cerebral angiogenesis: lessons from the cold-injury model. Trends Mol. Med. 8, 38–44 (2002).
Chi, O. Z., Hunter, C., Liu, X. & Weiss, H. R. Effects of anti-VEGF antibody on blood–brain barrier disruption in focal cerebral ischemia. Exp. Neurol. 204, 283–287 (2007).
Nicoletti, J. N. et al. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 151, 232–241 (2008).
Rigau, V. et al. Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130, 1942–1956 (2007).
van Bruggen, N. et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620 (1999).
Yeh, W. L., Lu, D. Y., Lin, C. J., Liou, H. C. & Fu, W. M. Inhibition of hypoxia-induced increase of blood–brain barrier permeability by YC-1 through the antagonism of HIF-1α accumulation and VEGF expression. Mol. Pharmacol. 72, 440–449 (2007).
Kim, H. et al. Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood–brain barrier. Biochem. Biophys. Res. Commun. 372, 243–248 (2008).
Martínez-Estrada, O. M. et al. Erythropoietin protects the in vitro blood–brain barrier against VEGF-induced permeability. Eur. J. Neurosci. 18, 2538–2544 (2003).
Chen, G. et al. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci. Lett. 425, 177–182 (2007).
Grasso, G. et al. Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res. 1182, 99–105 (2007).
Liao, Z. B., Zhi, X. G., Shi, Q. H. & He, Z. H. Recombinant human erythropoietin administration protects cortical neurons from traumatic brain injury in rats. Eur. J. Neurol. 15, 140–149 (2008).
Xiong, Y. et al. Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice. J. Neurosurg. 109, 510–521 (2008).
Stokely, M. E. & Orr, E. L. Acute effects of calvarial damage on dural mast cells, pial vascular permeability, and cerebral cortical histamine levels in rats and mice. J. Neurotrauma 25, 52–61 (2008).
Tósaki, A., Szerdahelyi, P. & Joó, F. Treatment with ranitidine of ischemic brain edema. Eur. J. Pharmacol. 264, 455–458 (1994).
Hutchinson, P. J. et al. Inflammation in human brain injury: intracerebral concentrations of IL-1α, IL-1β, and their endogenous inhibitor IL-1ra. J. Neurotrauma 24, 1545–1557 (2007).
Clausen, F., Lorant, T., Lewén, A. & Hillered, L. T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J. Neurotrauma 24, 1295–1307 (2007).
Carlos, T. M., Clark, R. S., Franicola-Higgins, D., Schiding, J. K. & Kochanek, P. M. Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J. Leukoc. Biol. 61, 279–285 (1997).
Vilalta, A. et al. Moderate and severe traumatic brain injury induce early overexpression of systemic and brain gelatinases. Intensive Care Med. 34, 1384–1392 (2008).
Petty, M. A. & Lo, E. H. Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog. Neurobiol. 68, 311–323 (2002).
Yang, Y., Estrada, E. Y., Thompson, J. F., Liu, W. & Rosenberg, G. A. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J. Cereb. Blood Flow Metab. 27, 697–709 (2006).
Truettner, J. S., Alonso, O. F. & Dalton Dietrich, W. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J. Cereb. Blood Flow Metab. 25, 1505–1516 (2005).
Zhao, B. Q. et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat. Med. 12, 441–445 (2006).
Petraglia, A. L., Marky, A. H., Walker, C., Thiyagarajan, M. & Zlokovic, B. V. Activated protein C is neuroprotective and mediates new blood vessel formation and neurogenesis after controlled cortical impact. Neurosurgery 66, 165–171 (2010).
Cheng, T. et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat. Med. 12, 1278–1285 (2006).
Wang, Y. et al. Differential neuroprotection and risk for bleeding from activated protein C with varying degrees of anticoagulant activity. Stroke 40, 1864–1869 (2009).
Schierhout, G. & Roberts, I. Anti-epileptic drugs for preventing seizures following acute traumatic brain injury. Cochrane Database of Systematic Reviews, Issue 4. Art. No.:CD000173. doi: 10.1002/14651858.CD000173 (2001).
Temkin, N. R. et al. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N. Engl. J. Med. 323, 497–502 (1990).
De Keyser, J., Mostert, J. P. & Koch, M. W. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci. 267, 3–16 (2008).
Reinert, M. et al. High level of extracellular potassium and its correlates after severe human head injury: relationship to high intracranial pressure. J. Neurosurg. 93, 800–807 (2000).
Pardridge, W. M. Blood–brain barrier genomics. Stroke 38 (2 Suppl.), 686–690 (2007).
Cucullo, L. et al. Blood–brain barrier damage induces release of α2-macroglobulin. Mol. Cell. Proteomics 2, 234–241 (2003).
Redell, J. B., Zhao, J. & Dash, P. K. Acutely increased cyclophilin a expression after brain injury: a role in blood–brain barrier function and tissue preservation. J. Neurosci. Res. 85, 1980–1988 (2007).
Zhao, X. et al. Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38, 3280–3286 (2007).
Luukinen, H., Viramo, P., Koski, K., Laippala, P. & Kivela, S. L. Head injuries and cognitive decline among older adults: a population-based study. Neurology 52, 557–562 (1999).
Saatman, K. E. et al. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 25, 719–738 (2008).
Ehrlich, P. Oxygen need by the organism: analytical study using color [German]. Hirschwald 8, 167 (1885).
Jander, S., Schroeter, M. & Saleh, A. Imaging inflammation in acute brain ischemia. Stroke 38, 642–645 (2007).
Tofts, P. S. & Kermode, A. G. Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med. 17, 357–367 (1991).
Zaharchuk, G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am. J. Neuroradiol. 28, 1850–1858 (2007).
Kanner, A. A. et al. Serum S100β: a noninvasive marker of blood–brain barrier function and brain lesions. Cancer 97, 2806–2813 (2003).
Kapural, M. et al. Serum S-100β as a possible marker of blood–brain barrier disruption. Brain Res. 940, 102–104 (2002).
Acknowledgements
This work was supported by the Sonderforschungsbereich TR3, the Israel Science Foundation (grant 566/07, AF), the Binational US–Israel Science Foundation (grant BSF 2007,185) and the National Institute for Neurological Disorders and Stroke (grant 1RO1N5066005). The authors thank Ms Inez Mureinik (Research Authority, Ben-Gurion University of the Negev, Israel) for her useful comments and Dr Amihai Pima (Department of Urology, Rabin Medical Center, Israel) for assistance with Figure 1. Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Shlosberg, D., Benifla, M., Kaufer, D. et al. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6, 393–403 (2010). https://doi.org/10.1038/nrneurol.2010.74
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrneurol.2010.74