[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury

Abstract

Traumatic brain injury (TBI) is the leading cause of death in young adults and children. The treatment of TBI in the acute phase has improved substantially; however, the prevention and management of long-term complications remain a challenge. Blood–brain barrier (BBB) breakdown has often been documented in patients with TBI, but the role of such vascular pathology in neurological dysfunction has only recently been explored. Animal studies have demonstrated that BBB breakdown is involved in the initiation of transcriptional changes in the neurovascular network that ultimately lead to delayed neuronal dysfunction and degeneration. Brain imaging data have confirmed the high incidence of BBB breakdown in patients with TBI and suggest that such pathology could be used as a biomarker in the clinic and in drug trials. Here, we review the neurological consequences of TBI, focusing on the long-term complications of such injuries. We present the clinical evidence for involvement of BBB breakdown in TBI and examine the primary and secondary mechanisms that underlie such pathology. We go on to consider the consequences of BBB injury, before analyzing potential mechanisms linking vascular pathology to neuronal dysfunction and degeneration, and exploring possible targets for treatment. Finally, we highlight areas for future basic research and clinical studies into TBI.

Key Points

  • Breakdown of the blood–brain barrier (BBB) follows traumatic brain injury (TBI) and can last from several days to years after the acute event

  • Secondary BBB breakdown—initiated within hours or days of injury—is associated with processes such as edema, neuroinflammation and cell death, and is considered to be potentially treatable

  • Experimental data indicate that BBB breakdown contributes to the clinical outcome of long-term TBI complications, such as Alzheimer disease, cognitive and psychological impairments, and epilepsy

  • A pressing need exists for new, practical and efficient diagnostic tools for the rapid detection and monitoring of BBB status

  • No accepted therapeutic protocols are available for the prevention or treatment of secondary damage resulting from BBB breakdown, although emergent treatment strategies aimed at modifying BBB-mediated injury are showing promise

  • Further basic and clinical research directed at the pathophysiology of BBB breakdown following TBI might provide novel targets for clinical intervention

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathophysiological events in traumatic brain injury.

Similar content being viewed by others

References

  1. Langlois, J. A., Rutland-Brown, W. & Thomas, K. E. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention [online], (2006).

    Google Scholar 

  2. Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J. & Sniezek, J. E. Traumatic brain injury in the United States: a public health perspective. J. Head Trauma Rehabil. 14, 602–615 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Finkelstein, E. A., Corso, P. S. & Miller, T. R. Incidence and Economic Burden of Injuries in the United States (Oxford University Press, Oxford, 2006).

    Book  Google Scholar 

  4. Badjatia, N. et al. Guidelines for prehospital management of traumatic brain injury 2nd edition. Prehosp. Emerg. Care 12 (Suppl. 1), S1–S52 (2008).

    Article  PubMed  Google Scholar 

  5. Ghajar, J. Traumatic brain injury. Lancet 356, 923–929 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Maas, A. I. et al. EBIC-guidelines for management of severe head injury in adults. European Brain Injury Consortium. Acta Neurochir. (Wien) 139, 286–294 (1997).

    Article  CAS  Google Scholar 

  7. Maas, A. I., Marmarou, A., Murray, G. D., Teasdale, S. G. & Steyerberg, E. W. Prognosis and clinical trial design in traumatic brain injury: the IMPACT study. J. Neurotrauma 24, 232–238 (2007).

    Article  PubMed  Google Scholar 

  8. Narayan, R. K. et al. Clinical trials in head injury. J. Neurotrauma 19, 503–557 (2002).

    Article  PubMed  Google Scholar 

  9. Maas, A. I., Stocchetti, N. & Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 7, 728–741 (2008).

    Article  PubMed  Google Scholar 

  10. Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Adelson, P. D., Whalen, M. J., Kochanek, P. M., Robichaud, P. & Carlos, T. M. Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report. Acta Neurochir. Suppl. 71, 104–106 (1998).

    CAS  PubMed  Google Scholar 

  12. Hawkins, B. T. & Davis, T. P. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57, 173–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Sharma, H. S. et al. Antibodies to serotonin attenuate closed head injury induced blood brain barrier disruption and brain pathology. Ann. NY Acad. Sci. 1122, 295–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Tomkins, O. et al. Blood–brain barrier disruption in post-traumatic epilepsy. J. Neurol. Neurosurg. Psychiatry 79, 774–777 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Unterberg, A. W., Stover, J., Kress, B. & Kiening, K. L. Edema and brain trauma. Neuroscience 129, 1021–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. van Vliet, E. A. et al. Blood–brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130, 521–534 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Tomkins, O. et al. Frequent blood–brain barrier disruption in the human cerebral cortex. Cell. Mol. Neurobiol. 21, 675–691 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Korn, A., Golan, H., Melamed, I., Pascual-Marqui, R. & Friedman, A. Focal cortical dysfunction and blood–brain barrier disruption in patients with postconcussion syndrome. J. Clin. Neurophysiol. 22, 1–9 (2005).

    Article  PubMed  Google Scholar 

  20. Strbian, D. et al. The blood–brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 153, 175–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Barzó, P., Marmarou, A., Fatouros, P., Corwin, F. & Dunbar, J. Magnetic resonance imaging-monitored acute blood–brain barrier changes in experimental traumatic brain injury. J. Neurosurg. 85, 1113–1121 (1996).

    Article  PubMed  Google Scholar 

  22. Csuka, E. et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J. Neuroimmunol. 101, 211–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Morganti-Kossmann, M. C. et al. TGF-β is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood–brain barrier function. J. Neurotrauma 16, 617–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Shapira, Y., Setton, D., Artru, A. A. & Shohami, E. Blood–brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth. Analg. 77, 141–148 (1993).

    CAS  PubMed  Google Scholar 

  25. Cernak, I. Animal models of head trauma. NeuroRx 2, 410–422 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morales, D. M. et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 136, 971–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Whetstone, W. D., Hsu, J. Y., Eisenberg, M., Werb, Z. & Noble-Haeusslein, L. J. Blood–spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J. Neurosci. Res. 74, 227–239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Başkaya, M. K., Rao, A. M., Doğan, A., Donaldson, D. & Dempsey, R. J. The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci. Lett. 226, 33–36 (1997).

    Article  PubMed  Google Scholar 

  29. Kirchhoff, C. et al. Intrathecal and systemic concentration of NT-proBNP in patients with severe traumatic brain injury. J. Neurotrauma 23, 943–949 (2006).

    Article  PubMed  Google Scholar 

  30. Lenzlinger, P. M., Marx, A., Trentz, O., Kossmann, T. & Morganti-Kossmann, M. C. Prolonged intrathecal release of soluble Fas following severe traumatic brain injury in humans. J. Neuroimmunol. 122, 167–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Stahel, P. F. et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood–brain barrier dysfunction in patients with traumatic brain injury. J. Neurotrauma 18, 773–781 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Rodríguez-Baeza, A., Reina- de la Torre, F., Poca, A., Martí, M. & Garnacho, A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 273, 583–593 (2003).

    Article  PubMed  Google Scholar 

  33. Bouma, G. J. et al. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J. Neurosurg. 77, 360–368 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Robertson, C. S., Contant, C. F., Gokaslan, Z. L., Narayan, R. K. & Grossman, R. G. Cerebral blood flow, arteriovenous oxygen difference, and outcome in head injured patients. J. Neurol. Neurosurg. Psychiatry 55, 594–603 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fischer, S., Wobben, M., Marti, H. H., Renz, D. & Schaper, W. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc. Res. 63, 70–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, J. H. et al. Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J. Neurosurg. 87, 221–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Rangel-Castilla, L., Gasco, J., Nauta, H. J., Okonkwo, D. O. & Robertson, C. S. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg. Focus 25, E7 (2008).

    Article  PubMed  Google Scholar 

  38. Cherian, L., Hlatky, R. & Robertson, C. S. Nitric oxide in traumatic brain injury. Brain Pathol. 14, 195–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Nekludov, M., Antovic, J., Bredbacka, S. & Blombäck, M. Coagulation abnormalities associated with severe isolated traumatic brain injury: cerebral arterio-venous differences in coagulation and inflammatory markers. J. Neurotrauma 24, 174–180 (2007).

    Article  PubMed  Google Scholar 

  40. Muellner, A. et al. Microvascular basal lamina antigen loss after traumatic brain injury in the rat. J. Neurotrauma 20, 745–754 (2003).

    Article  PubMed  Google Scholar 

  41. Servadei, F. et al. Traumatic subarachnoid hemorrhage: demographic and clinical study of 750 patients from the European brain injury consortium survey of head injuries. Neurosurgery 50, 261–267 (2002).

    PubMed  Google Scholar 

  42. Faden, A. I., Demediuk, P., Panter, S. S. & Vink, R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244, 798–800 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Teichberg, V. I., Cohen- Kashi-Malina, K., Cooper, I. & Zlotnik, A. Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 158, 301–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Nag, S., Venugopalan, R. & Stewart, D. J. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol. 114, 459–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Nag, S., Manias, J. L. & Stewart, D. J. Expression of endothelial phosphorylated caveolin-1 is increased in brain injury. Neuropathol. Appl. Neurobiol. 35, 417–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, J., Moore, A. N., Redell, J. B. & Dash, P. K. Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J. Neurosci. 27, 10240–10248 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yeung, D., Manias, J. L., Stewart, D. J. & Nag, S. Decreased junctional adhesion molecule-A expression during blood–brain barrier breakdown. Acta Neuropathol. 115, 635–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Dore-Duffy, P. et al. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc. Res. 60, 55–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Nag, S., Takahashi, J. L. & Kilty, D. W. Role of vascular endothelial growth factor in blood–brain barrier breakdown and angiogenesis in brain trauma. J. Neuropathol. Exp. Neurol. 56, 912–921 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Infante-Duarte, C., Waiczies, S., Wuerfel, J. & Zipp, F. New developments in understanding and treating neuroinflammation. J. Mol. Med. 86, 975–985 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Oby, E. & Janigro, D. The blood–brain barrier and epilepsy. Epilepsia 47, 1761–1774 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Skaper, S. D. The brain as a target for inflammatory processes and neuroprotective strategies. Ann. NY Acad. Sci. 1122, 23–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Morganti-Kossmann, M. C., Satgunaseelan, L., Bye. N. & Kossmann, T. Modulation of immune response by head injury. Injury 38, 1392–1400 (2007).

    Article  PubMed  Google Scholar 

  54. Holmin, S. & Mathiesen, T. Intracerebral administration of interleukin-1β and induction of inflammation, apoptosis, and vasogenic edema. J. Neurosurg. 92, 108–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Holmin, S., Söderlund, J., Biberfeld, P. & Mathiesen, T. Intracerebral inflammation after human brain contusion. Neurosurgery 42, 291–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Balabanov, R. et al. Endothelial cell activation following moderate traumatic brain injury. Neuro. Res. 23, 175–182 (2001).

    Article  CAS  Google Scholar 

  57. Chen, G., Shi, J., Hu, Z. & Hang, C. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm. 2008, 716458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pleines, U. E., Stover, J. F., Kossmann, T., Trentz, O. & Morganti-Kossman, M. C. Soluble ICAM-1 in CSF coincides with the extent of cerebral damage in patients with severe traumatic brain injury. J. Neurotrauma 15, 399–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Aihara, N., Hall, J. J., Pitts, L. H., Fukuda, K. & Noble, L. J. Altered immunoexpression of microglia and macrophages after mild head injury. J. Neurotrauma 12, 53–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Stamatovic, S. M., Dimitrijevic, O. B., Keep, R. F. & Andjelkovic, A. V. Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir. Suppl. 96, 444–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Allan, S. M. & Rothwell, N. J. Cytokines and acute neurodegeneration. Nat. Rev. Neurosci. 2, 734–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Lucas, S. M., Rothwell, N. J. & Gibson, R. M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147 (Suppl. 1), S232–S340 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Harkness, K. A. et al. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 123, 698–709 (2000).

    Article  PubMed  Google Scholar 

  64. Suehiro, E. et al. Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy. J. Neurotrauma 21, 1706–1711 (2004).

    Article  PubMed  Google Scholar 

  65. Lenzlinger, P. M., Morganti-Kossmann, M. C., Laurer, H. L. & McIntosh, T. K. The duality of the inflammatory response to traumatic brain injury. Mol. Neurobiol. 24, 169–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Allan, S. M., Tyrrell, P. J. & Rothwell, N. J. Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 5, 629–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Fabene, P. F. et al. A role for leukocyte–endothelial adhesion mechanisms in epilepsy. Nat. Med. 14, 1377–1383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vezzani, A., Balosso, S. & Ravizza, T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav. Immun. 22, 797–803 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Cernak, I., Stoica, B., Byrnes, K. R., Di Giovanni, S. & Faden, A. I. Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4, 1286–1293 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Clark, R. S. et al. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13, 813–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Hoane, M. R., Kaplan, S. A. & Ellis, A. L. The effects of nicotinamide on apoptosis and blood–brain barrier breakdown following traumatic brain injury. Brain Res. 1125, 185–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Rink, A. et al. Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am. J. Pathol. 147, 1575–1583 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Uzan, M. et al. Evaluation of apoptosis in cerebrospinal fluid of patients with severe head injury. Acta Neurochir. (Wien) 148, 1157–1164 (2006).

    Article  CAS  Google Scholar 

  74. Yakovlev, A. G. et al. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17, 7415–7424 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, X., Chen, Y., Jenkins, L. W., Kochanek, P. M. & Clark, R. S. Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit. Care 9, 66–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Nag, S., Papneja, T., Venugopalan, R. & Stewart, D. J. Increased angiopoietin2 expression is associated with endothelial apoptosis and blood–brain barrier breakdown. Lab. Invest. 85, 1189–1198 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Li, Y. Q., Chen, P., Haimovitz-Friedman, A., Reilly, R. M. & Wong, C. S. Endothelial apoptosis initiates acute blood–brain barrier disruption after ionizing radiation. Cancer Res. 63, 5950–5956 (2003).

    CAS  PubMed  Google Scholar 

  78. Tomkins, O. et al. Blood–brain barrier disruption results in delayed functional and structural alterations in the rat neocortex. Neurobiol. Dis. 25, 367–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Di Giovanni, S. et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc. Natl Acad. Sci. USA 102, 8333–8338 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Williams, S. et al. In situ DNA fragmentation occurs in white matter up to 12 months after head injury in man. Acta Neuropathol. 102, 581–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Cacheaux, L. P. et al. Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J. Neurosci. 29, 8927–8935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ruttan, L., Martin, K., Liu, A., Colella, B. & Green, R. E. Long-term cognitive outcome in moderate to severe traumatic brain injury: a meta-analysis examining timed and untimed tests at 1 and 4.5 or more years after injury. Arch. Phys. Med. Rehabil. 89 (12 Suppl.), S69–S76 (2008).

    Article  PubMed  Google Scholar 

  83. Annegers, J. F., Hauser, W. A., Coan, S. P. & Rocca, W. A. A population-based study of seizures after traumatic brain injuries. N. Engl. J. Med. 338, 20–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Herman, S. T. Epilepsy after brain insult: targeting epileptogenesis. Neurology 59, S21–S26 (2002).

    Article  PubMed  Google Scholar 

  85. Annegers, J. F. & Coan, S. P. The risks of epilepsy after traumatic brain injury. Seizure 9, 453–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Pavlovsky, L. et al. Persistent BBB disruption may underlie alpha interferon-induced seizures. J. Neurol. 252, 42–46 (2005).

    Article  PubMed  Google Scholar 

  87. Wang, H. C. et al. Factors predictive of outcome in posttraumatic seizures. J. Trauma 64, 883–888 (2008).

    Article  PubMed  Google Scholar 

  88. Ivens, S. et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130, 535–547 (2007).

    Article  PubMed  Google Scholar 

  89. David, Y. et al. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J. Neurosci. 29, 10588–10599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Floyd, C. L. & Lyeth, B. G. In Progress in Brain Research Neurotrauma: New Insights into Pathology and Treatment (eds Weber, J. T. & Maas, A. I. R.) 61–79 (Elsevier, Amsterdam, 2007).

    Book  Google Scholar 

  91. Heinemann, U. et al. Alterations of glial cell function in temporal lobe epilepsy. Epilepsia 41 (Suppl. 6), S185–S189 (2000).

    Article  PubMed  Google Scholar 

  92. Jabs, R., Seifert, G. & Steinhauser, C. Astrocytic function and its alteration in the epileptic brain. Epilepsia 49 (Suppl. 2), S3–S12 (2008).

    Article  CAS  Google Scholar 

  93. Seifert, G., Schilling, K. & Steinhauser, C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat. Rev. Neurosci. 7, 194–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Seiffert, E. et al. Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J. Neurosci. 24, 7829–7836 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tian, G. F. et al. An astrocytic basis of epilepsy. Nat. Med. 11, 973–981 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Filosa, A. et al. Neuron–glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat. Neurosci. 12, 1285–1292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Henneberger, C., Papouin, T., Oliet, S. H. & Rusakov, D. A. Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232–236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wetherington, J., Serrano, G. & Dingledine, R. Astrocytes in the epileptic brain. Neuron 58, 168–178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ivens, S. et al. Blood–brain barrier breakdown as a novel mechanism underlying cerebral hyperperfusion syndrome. J. Neurol. 257, 615–620 (2010).

    Article  PubMed  Google Scholar 

  100. Marchi, N. et al. Seizure-promoting effect of blood–brain barrier disruption. Epilepsia 48, 732–742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Friedman, A., Kaufer, D. & Heinemann, U. Blood–brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res. 85, 142–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. D'Ambrosio, R., Maris, D. O., Grady, M. S., Winn, H. R. & Janigro, D. Impaired K+ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J. Neurosci. 19, 8152–8162 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Santhakumar, V., Voipio, J., Kaila, K. & Soltesz, I. Post-traumatic hyperexcitability is not caused by impaired buffering of extracellular potassium. J. Neurosci. 23, 5865–5876 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Viviani, B. et al. Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vezzani, A. & Baram, T. Z. New roles for interleukin-1 beta in the mechanisms of epilepsy. Epilepsy Curr. 7, 45–50 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ferrari, C. C. et al. Reversible demyelination, blood–brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain. Am. J. Pathol. 165, 1827–1837 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gursoy-Ozdemir, Y. et al. Cortical spreading depression activates and upregulates MMP-9. J. Clin. Invest. 113, 1447–1455 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vezzani, A. & Granata, T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46, 1724–1743 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Guo, Z. et al. Head injury and the risk of AD in the MIRAGE study. Neurology 54, 1316–1323 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Jellinger, K., Paulus, W., Wrocklage, C. & Litvan, I. Traumatic brain injury as a risk factor for Alzheimer disease. Comparison of two retrospective autopsy cohorts with evaluation of ApoE genotype. BMC Neurol. 1, 3 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451, 720–724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Emmerling, M. R. et al. Traumatic brain injury elevates the Alzheimer's amyloid peptide Aβ42 in human CSF. A possible role for nerve cell injury. Ann. NY Acad. Sci. 903, 118–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Saunders, A. M. et al. Association of apolipoprotein E allele ε4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Martel, C. L. et al. Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood–brain barrier transport of circulating Alzheimer's amyloid β. J. Neurochem. 69, 1995–2004 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Zhou, W. et al. Meta-analysis of APOE4 allele and outcome after traumatic brain injury. J. Neurotrauma 25, 279–290 (2008).

    Article  PubMed  Google Scholar 

  116. Moran, L. M. et al. Apolipoprotein E4 as a predictor of outcomes in pediatric mild traumatic brain injury. J. Neurotrauma 26, 1489–1495 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yamada, K. et al. The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid β peptides in an in vitro model of the blood–brain barrier cells. J. Biol. Chem. 283, 34554–34562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Deane, R. et al. RAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Yan, F. L., Zheng, Y. & Zhao, F. D. Effects of ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta Neuropathol. 116, 529–535 (2008).

    Article  PubMed  Google Scholar 

  120. Donahue, J. et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol. 112, 405–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Jeynes, B. & Provias, J. Evidence for altered LRP/RAGE expression in Alzheimer lesion pathogenesis. Curr. Alzheimer Res. 5, 432–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Ikonomovic, M. D. et al. Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 190, 192–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Cirrito, J. R. et al. Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo. Neuron 58, 42–51 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sagare, A. et al. Clearance of amyloid-β by circulating lipoprotein receptors. Nat. Med. 13, 1029–1031 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen, X., Gawryluk, J., Wagener, J., Ghribi, O. & Geiger, J. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. J. Neuroinflammation 5, 12 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Unterberg, A., Wahl, M. & Baethmann, A. Effects of bradykinin on permeability and diameter of pial vessels in vivo. J. Cereb. Blood Flow Metab. 4, 574–585 (1984).

    Article  CAS  PubMed  Google Scholar 

  127. Plesnila, N. et al. Role of bradykinin B2 receptors in the formation of vasogenic brain edema in rats. J. Neurotrauma 18, 1049–1058 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Ivashkova, Y. et al. Bradykinin B2 receptor antagonism with LF 18–1505T reduces brain edema and improves neurological outcome after closed head trauma in rats. J. Trauma 61, 879–885 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Stover, J. F., Dohse, N. K. & Unterberg, A. W. Bradykinin 2 receptor antagonist LF 16–0687Ms reduces posttraumatic brain edema. Acta Neurochir. Suppl. 76, 171–175 (2000).

    CAS  PubMed  Google Scholar 

  130. Narotam, P. K. et al. Traumatic brain contusions: a clinical role for the kinin antagonist CP-0127. Acta Neurochir. (Wien) 140, 793–803 (1998).

    Article  CAS  Google Scholar 

  131. Ker, K. & Blackhall, K. Bradykinin beta-2 receptor antagonists for acute traumatic brain injury. Cochrane Database of Systematic Reviews, Issue 1. Art. No.:CD006686. doi: 10.1002/14651858.CD006686.pub2 (2008).

  132. Nag, S. The blood–brain barrier and cerebral angiogenesis: lessons from the cold-injury model. Trends Mol. Med. 8, 38–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Chi, O. Z., Hunter, C., Liu, X. & Weiss, H. R. Effects of anti-VEGF antibody on blood–brain barrier disruption in focal cerebral ischemia. Exp. Neurol. 204, 283–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Nicoletti, J. N. et al. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 151, 232–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Rigau, V. et al. Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130, 1942–1956 (2007).

    Article  PubMed  Google Scholar 

  136. van Bruggen, N. et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yeh, W. L., Lu, D. Y., Lin, C. J., Liou, H. C. & Fu, W. M. Inhibition of hypoxia-induced increase of blood–brain barrier permeability by YC-1 through the antagonism of HIF-1α accumulation and VEGF expression. Mol. Pharmacol. 72, 440–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Kim, H. et al. Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood–brain barrier. Biochem. Biophys. Res. Commun. 372, 243–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Martínez-Estrada, O. M. et al. Erythropoietin protects the in vitro blood–brain barrier against VEGF-induced permeability. Eur. J. Neurosci. 18, 2538–2544 (2003).

    Article  PubMed  Google Scholar 

  140. Chen, G. et al. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci. Lett. 425, 177–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Grasso, G. et al. Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res. 1182, 99–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Liao, Z. B., Zhi, X. G., Shi, Q. H. & He, Z. H. Recombinant human erythropoietin administration protects cortical neurons from traumatic brain injury in rats. Eur. J. Neurol. 15, 140–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Xiong, Y. et al. Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice. J. Neurosurg. 109, 510–521 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Stokely, M. E. & Orr, E. L. Acute effects of calvarial damage on dural mast cells, pial vascular permeability, and cerebral cortical histamine levels in rats and mice. J. Neurotrauma 25, 52–61 (2008).

    Article  PubMed  Google Scholar 

  145. Tósaki, A., Szerdahelyi, P. & Joó, F. Treatment with ranitidine of ischemic brain edema. Eur. J. Pharmacol. 264, 455–458 (1994).

    Article  PubMed  Google Scholar 

  146. Hutchinson, P. J. et al. Inflammation in human brain injury: intracerebral concentrations of IL-1α, IL-1β, and their endogenous inhibitor IL-1ra. J. Neurotrauma 24, 1545–1557 (2007).

    Article  PubMed  Google Scholar 

  147. Clausen, F., Lorant, T., Lewén, A. & Hillered, L. T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J. Neurotrauma 24, 1295–1307 (2007).

    Article  PubMed  Google Scholar 

  148. Carlos, T. M., Clark, R. S., Franicola-Higgins, D., Schiding, J. K. & Kochanek, P. M. Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J. Leukoc. Biol. 61, 279–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  149. Vilalta, A. et al. Moderate and severe traumatic brain injury induce early overexpression of systemic and brain gelatinases. Intensive Care Med. 34, 1384–1392 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Petty, M. A. & Lo, E. H. Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog. Neurobiol. 68, 311–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Yang, Y., Estrada, E. Y., Thompson, J. F., Liu, W. & Rosenberg, G. A. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J. Cereb. Blood Flow Metab. 27, 697–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Truettner, J. S., Alonso, O. F. & Dalton Dietrich, W. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J. Cereb. Blood Flow Metab. 25, 1505–1516 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Zhao, B. Q. et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat. Med. 12, 441–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Petraglia, A. L., Marky, A. H., Walker, C., Thiyagarajan, M. & Zlokovic, B. V. Activated protein C is neuroprotective and mediates new blood vessel formation and neurogenesis after controlled cortical impact. Neurosurgery 66, 165–171 (2010).

    Article  PubMed  Google Scholar 

  155. Cheng, T. et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat. Med. 12, 1278–1285 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, Y. et al. Differential neuroprotection and risk for bleeding from activated protein C with varying degrees of anticoagulant activity. Stroke 40, 1864–1869 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Schierhout, G. & Roberts, I. Anti-epileptic drugs for preventing seizures following acute traumatic brain injury. Cochrane Database of Systematic Reviews, Issue 4. Art. No.:CD000173. doi: 10.1002/14651858.CD000173 (2001).

  158. Temkin, N. R. et al. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N. Engl. J. Med. 323, 497–502 (1990).

    Article  CAS  PubMed  Google Scholar 

  159. De Keyser, J., Mostert, J. P. & Koch, M. W. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci. 267, 3–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Reinert, M. et al. High level of extracellular potassium and its correlates after severe human head injury: relationship to high intracranial pressure. J. Neurosurg. 93, 800–807 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Pardridge, W. M. Blood–brain barrier genomics. Stroke 38 (2 Suppl.), 686–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Cucullo, L. et al. Blood–brain barrier damage induces release of α2-macroglobulin. Mol. Cell. Proteomics 2, 234–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Redell, J. B., Zhao, J. & Dash, P. K. Acutely increased cyclophilin a expression after brain injury: a role in blood–brain barrier function and tissue preservation. J. Neurosci. Res. 85, 1980–1988 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Zhao, X. et al. Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38, 3280–3286 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Luukinen, H., Viramo, P., Koski, K., Laippala, P. & Kivela, S. L. Head injuries and cognitive decline among older adults: a population-based study. Neurology 52, 557–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Saatman, K. E. et al. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 25, 719–738 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ehrlich, P. Oxygen need by the organism: analytical study using color [German]. Hirschwald 8, 167 (1885).

    Google Scholar 

  168. Jander, S., Schroeter, M. & Saleh, A. Imaging inflammation in acute brain ischemia. Stroke 38, 642–645 (2007).

    Article  PubMed  Google Scholar 

  169. Tofts, P. S. & Kermode, A. G. Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med. 17, 357–367 (1991).

    Article  CAS  PubMed  Google Scholar 

  170. Zaharchuk, G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am. J. Neuroradiol. 28, 1850–1858 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kanner, A. A. et al. Serum S100β: a noninvasive marker of blood–brain barrier function and brain lesions. Cancer 97, 2806–2813 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Kapural, M. et al. Serum S-100β as a possible marker of blood–brain barrier disruption. Brain Res. 940, 102–104 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sonderforschungsbereich TR3, the Israel Science Foundation (grant 566/07, AF), the Binational US–Israel Science Foundation (grant BSF 2007,185) and the National Institute for Neurological Disorders and Stroke (grant 1RO1N5066005). The authors thank Ms Inez Mureinik (Research Authority, Ben-Gurion University of the Negev, Israel) for her useful comments and Dr Amihai Pima (Department of Urology, Rabin Medical Center, Israel) for assistance with Figure 1. Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alon Friedman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shlosberg, D., Benifla, M., Kaufer, D. et al. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6, 393–403 (2010). https://doi.org/10.1038/nrneurol.2010.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.74

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing