[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pyramidal neurons: dendritic structure and synaptic integration

Key Points

  • Pyramidal neurons have basal and apical dendrites, including an apical tuft. This preserved core structure suggests that they have conserved core functions, whereas structural variation in other areas suggests additional functional specialization.

  • A number of new methods for studying pyramidal-cell activation and circuitry are available. These include in vivo patch-clamp recording, optical activation and transgenic methods for activating, inactivating or labelling neurons and their connections.

  • Synaptic inputs from distinct sources occur onto separate dendritic domains. Defining the degree to which synapses that carry different kinds of information are segregated onto different dendritic domains remains an important challenge.

  • Most excitatory synapses onto pyramidal neurons occur on dendritic spines, but the structure of the synapses they receive differs between dendritic domains.

  • Dendritic integration of synaptic input depends on the dendritic domain that is targeted. Synapses distant from the soma tend to produce less synaptic depolarization, but this might be countered by increasing the conductance of distal synapses or by activating voltage-gated channels in dendrites. Synapses on small-diameter dendrites cause larger local voltage changes, which reduce the effectiveness of synaptic scaling but increase the activation of voltage-gated conductances.

  • Inhibitory synapses specifically target the axon, soma or different dendritic domains. Integration of inhibitory inputs also differs across cellular domains.

  • The intrinsic firing properties of pyramidal neurons vary considerably. Along with variation in dendritic structure and channel distributions, such variability suggests that different pyramidal neurons might carry out specialized functions.

  • Pyramidal-neuron dendrites contain voltage-gated channels that can influence synaptic integration. These channels can also support backpropagating action potentials and dendritically initiated spikes. Dendritic excitability is a general property of all pyramidal neurons studied so far, but the details differ between different types of pyramidal neurons. Although there is some evidence for dendritic excitability in vivo, much more work is needed in this area.

  • Activation of a small fraction of the tens of thousands of excitatory synapses on a pyramidal neuron can probably evoke dendritic spikes, but these events do not always propagate to the soma and the axon. The coupling of dendritic spikes to axonal action-potential firing probably depends on the pattern of synaptic activation. This results in forms of coincidence detection that are determined by dendritic structure and excitability.

  • Backpropagating action potentials and dendritic spikes are important signals for the induction of synaptic plasticity. Even single dendritic spikes can result in significant long-term potentiation or long-term depression.

  • Neurotransmitters can modulate pyramidal-neuron function. At least some forms of modulation affect various dendritic domains and their synaptic inputs in different ways.

  • Domain-specific properties in excitatory and inhibitory synaptic inputs, voltage-gated channels, dendritic excitability and neuromodulation all point to a multi-compartment model of pyramidal-neuron function. Elaborating simple models of pyramidal-neuron function based on these dendritic-domain-specific properties is a central challenge for the study of cortical function.

Abstract

Pyramidal neurons are characterized by their distinct apical and basal dendritic trees and the pyramidal shape of their soma. They are found in several regions of the CNS and, although the reasons for their abundance remain unclear, functional studies — especially of CA1 hippocampal and layer V neocortical pyramidal neurons — have offered insights into the functions of their unique cellular architecture. Pyramidal neurons are not all identical, but some shared functional principles can be identified. In particular, the existence of dendritic domains with distinct synaptic inputs, excitability, modulation and plasticity appears to be a common feature that allows synapses throughout the dendritic tree to contribute to action-potential generation. These properties support a variety of coincidence-detection mechanisms, which are likely to be crucial for synaptic integration and plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pyramidal-neuron structure and domains of synaptic input.
Figure 2: Dendritic spines and synapses on pyramidal neurons.
Figure 3: Dendritic-domain-specific targeting by inhibitory synapses on pyramidal neurons.
Figure 4: Dendritic excitability of pyramidal neurons.
Figure 5: Coincidence detection by excitable dendrites in pyramidal neurons.
Figure 6: Modulation of pyramidal-neuron function by metabotropic-receptor activation or activity-dependent plasticity.

Similar content being viewed by others

References

  1. Elston, G. N. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13, 1124–1138 (2003).

    PubMed  Google Scholar 

  2. Nieuwenhuys, R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat. Embryol. (Berl.) 190, 307–337 (1994).

    CAS  Google Scholar 

  3. Ramon y Cajal, S. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  4. Bannister, N. J. & Larkman, A. U. Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns. J. Comp. Neurol. 360, 150–160 (1995).

    CAS  PubMed  Google Scholar 

  5. Ito, M., Kato, M. & Kawabata, M. Premature bifurcation of the apical dendritic trunk of vibrissa-responding pyramidal neurones of X-irradiated rat neocortex. J. Physiol. 512, 543–553 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. DeFelipe, J. & Farinas, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563–607 (1992).

    CAS  PubMed  Google Scholar 

  7. Gao, W. J. & Zheng, Z. H. Target-specific differences in somatodendritic morphology of layer V pyramidal neurons in rat motor cortex. J. Comp. Neurol. 476, 174–185 (2004).

    PubMed  Google Scholar 

  8. Kasper, E. M., Larkman, A. U., Lubke, J. & Blakemore, C. Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets. J. Comp. Neurol. 339, 459–474 (1994).

    CAS  PubMed  Google Scholar 

  9. Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    CAS  PubMed  Google Scholar 

  10. Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J. Neurosci. Methods 65, 113–136 (1996).

    CAS  PubMed  Google Scholar 

  11. Joshi, S. & Hawken, M. J. Loose-patch–juxtacellular recording in vivo—a method for functional characterization and labeling of neurons in macaque V1. J. Neurosci. Methods 156, 37–49 (2006).

    CAS  PubMed  Google Scholar 

  12. Eccles, J. C., Llinas, R. & Sasaki, K. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. 182, 268–296 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferster, D. & Jagadeesh, B. EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J. Neurosci. 12, 1262–1274 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pei, X., Volgushev, M., Vidyasagar, T. R. & Creutzfeldt, O. D. Whole cell recording and conductance measurements in cat visual cortex in-vivo. Neuroreport 2, 485–488 (1991).

    CAS  PubMed  Google Scholar 

  15. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nature Methods 5, 61–67 (2008).

    CAS  PubMed  Google Scholar 

  16. Brecht, M., Roth, A. & Sakmann, B. Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J. Physiol. 553, 243–265 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Callaway, E. M. Cell type specificity of local cortical connections. J. Neurocytol. 31, 231–237 (2002).

    CAS  PubMed  Google Scholar 

  18. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    CAS  PubMed  Google Scholar 

  20. Miles, R. & Poncer, J. C. Paired recordings from neurones. Curr. Opin. Neurobiol. 6, 387–394 (1996).

    CAS  PubMed  Google Scholar 

  21. Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500, 409–440 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marek, K. W. & Davis, G. W. Controlling the active properties of excitable cells. Curr. Opin. Neurobiol. 13, 607–611 (2003).

    CAS  PubMed  Google Scholar 

  23. Polleux, F. Genetic mechanisms specifying cortical connectivity: let's make some projections together. Neuron 46, 395–400 (2005).

    CAS  PubMed  Google Scholar 

  24. Cauller, L. J. & Connors, B. W. in Single Neuron Computation (eds McKenna, T., Davis, J. & Zornetzer, S. F.) 199–230 (Academic, San Diego, 1992).

    Google Scholar 

  25. Cauller, L. J. & Connors, B. W. Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J. Neurosci. 14, 751–762 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Larkum, M. E., Senn, W. & Luscher, H. R. Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14, 1059–1070 (2004).

    PubMed  Google Scholar 

  27. Ishizuka, N., Weber, J. & Amaral, D. G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295, 580–623 (1990).

    CAS  PubMed  Google Scholar 

  28. Li, X. G., Somogyi, P., Ylinen, A. & Buzsaki, G. The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 339, 181–208 (1994).

    CAS  PubMed  Google Scholar 

  29. Gasparini, S., Migliore, M. & Magee, J. C. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–11056 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Losonczy, A. & Magee, J. C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006). In this study, rapid uncaging of glutamate onto multiple spines on the same apical oblique dendrite of a CA1 neuron produced local dendritic spikes but did not trigger axonal action potentials.

    CAS  PubMed  Google Scholar 

  31. Ballesteros-Yanez, I., Benavides-Piccione, R., Elston, G. N., Yuste, R. & DeFelipe, J. Density and morphology of dendritic spines in mouse neocortex. Neuroscience 138, 403–409 (2006).

    CAS  PubMed  Google Scholar 

  32. Elston, G. N. & DeFelipe, J. Spine distribution in cortical pyramidal cells: a common organizational principle across species. Prog. Brain Res. 136, 109–133 (2002).

    PubMed  Google Scholar 

  33. Sorra, K. E. & Harris, K. M. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501–511 (2000).

    CAS  PubMed  Google Scholar 

  34. Bonhoeffer, T. & Yuste, R. Spine motility. Phenomenology, mechanisms, and function. Neuron 35, 1019–1027 (2002).

    CAS  PubMed  Google Scholar 

  35. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Google Scholar 

  36. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  PubMed  Google Scholar 

  37. Holtmaat, A. J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    CAS  PubMed  Google Scholar 

  38. Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E. & Svoboda, K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441, 979–983 (2006).

    CAS  PubMed  Google Scholar 

  39. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure–stability–function relationships of dendritic spines. Trends Neurosci. 26, 360–368 (2003).

    CAS  PubMed  Google Scholar 

  40. Bourne, J. & Harris, K. M. Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol. 17, 381–386 (2007).

    CAS  PubMed  Google Scholar 

  41. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Matus, A. Actin-based plasticity in dendritic spines. Science 290, 754–758 (2000).

    CAS  PubMed  Google Scholar 

  43. Yankova, M., Hart, S. A. & Woolley, C. S. Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: a serial electron-microscopic study. Proc. Natl Acad. Sci. USA 98, 3525–3530 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sorra, K. E. & Harris, K. M. Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J. Neurosci. 13, 3736–3748 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Woolley, C. S., Wenzel, H. J. & Schwartzkroin, P. A. Estradiol increases the frequency of multiple synapse boutons in the hippocampal CA1 region of the adult female rat. J. Comp. Neurol. 373, 108–117 (1996).

    CAS  PubMed  Google Scholar 

  46. Cohen, R. S., Blomberg, F., Berzins, K. & Siekevitz, P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J. Cell Biol. 74, 181–203 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cohen, R. S. & Siekevitz, P. Form of the postsynaptic density. A serial section study. J. Cell Biol. 78, 36–46 (1978).

    CAS  PubMed  Google Scholar 

  48. Peters, A. & Kaiserman-Abramof, I. R. The small pyramidal neuron of the rat cerebral cortex. The synapses upon dendritic spines. Z. Zellforsch. Mikrosk. Anat. 100, 487–506 (1969).

    CAS  PubMed  Google Scholar 

  49. Harris, K. M. & Stevens, J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Geinisman, Y., Detoledo-Morrell, L., Morrell, F., Persina, I. S. & Beatty, M. A. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368, 413–423 (1996).

    CAS  PubMed  Google Scholar 

  51. Geinisman, Y. et al. Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiol. Aging 25, 407–416 (2004).

    CAS  PubMed  Google Scholar 

  52. Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A. & Geinisman, Y. Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience 125, 615–623 (2004).

    CAS  PubMed  Google Scholar 

  53. Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A. & Geinisman, Y. Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. J. Comp. Neurol. 468, 86–95 (2004).

    CAS  PubMed  Google Scholar 

  54. Geinisman, Y. Perforated axospinous synapses with multiple, completely partitioned transmission zones: probable structural intermediates in synaptic plasticity. Hippocampus 3, 417–433 (1993).

    CAS  PubMed  Google Scholar 

  55. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001). This study used two-photon uncaging of glutamate onto spines and found that large spines are associated with large AMPAR-mediated currents.

    CAS  PubMed  Google Scholar 

  56. Malenka, R. C. & Nicoll, R. A. Silent synapses speak up. Neuron 19, 473–476 (1997).

    CAS  PubMed  Google Scholar 

  57. Voronin, L. L. & Cherubini, E. 'Deaf, mute and whispering' silent synapses: their role in synaptic plasticity. J. Physiol. 557, 3–12 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Geinisman, Y. Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb. Cortex 10, 952–962 (2000).

    CAS  PubMed  Google Scholar 

  59. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131 (1997).

    CAS  PubMed  Google Scholar 

  60. Spruston, N., Jaffe, D. B. & Johnston, D. Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends Neurosci. 17, 161–166 (1994).

    CAS  PubMed  Google Scholar 

  61. Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L. & Spruston, N. Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J. Physiol. 568, 69–82 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Williams, S. R. & Stuart, G. J. Role of dendritic synapse location in the control of action potential output. Trends Neurosci. 26, 147–154 (2003).

    CAS  PubMed  Google Scholar 

  64. Magee, J. C. & Cook, E. P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neurosci. 3, 895–903 (2000). This study used dendritic recordings and locally induced spontaneous glutamate release in CA1 neurons to reveal that larger conductance synapses compensate for more distal dendritic locations.

    CAS  PubMed  Google Scholar 

  65. Nicholson, D. A. et al. Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron 50, 431–442 (2006). In this study, electron microscopy and immunogold labelling of AMPAR identified structural correlates of synaptic scaling for distal Schaffer collateral synapses but not for synapses in the apical tuft; computational modelling put the findings in a functional context.

    CAS  PubMed  Google Scholar 

  66. Williams, S. R. & Stuart, G. J. Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–1910 (2002). In this study, dendritic recording and analysis of spontaneous synaptic potentials originating at different dendritic locations revealed no synaptic scaling in neocortical layer V pyramidal neurons.

    CAS  PubMed  Google Scholar 

  67. Häusser, M. & Mel, B. Dendrites: bug or feature? Curr. Opin. Neurobiol. 13, 372–383 (2003).

    PubMed  Google Scholar 

  68. Gonzales, R. B., DeLeon Galvan, C. J., Rangel, Y. M. & Claiborne, B. J. Distribution of thorny excrescences on CA3 pyramidal neurons in the rat hippocampus. J. Comp. Neurol. 430, 357–368 (2001).

    CAS  PubMed  Google Scholar 

  69. Chicurel, M. E. & Harris, K. M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).

    CAS  PubMed  Google Scholar 

  70. Amaral, D. & Lavenex, P. in The Hippocampus Book (eds Andersen, P., Morris, R., Amaral, D., Bliss, T. & O'Keefe, J.) 37–114 (Oxford Univ. Press, Oxford, 2007).

    Google Scholar 

  71. Megias, M., Emri, Z., Freund, T. F. & Gulyas, A. I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    CAS  PubMed  Google Scholar 

  72. Kawaguchi, Y. & Kondo, S. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J. Neurocytol. 31, 277–287 (2002).

    PubMed  Google Scholar 

  73. McBain, C. J. & Fisahn, A. Interneurons unbound. Nature Rev. Neurosci. 2, 11–23 (2001).

    CAS  Google Scholar 

  74. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. 562, 9–26 (2005).

    CAS  PubMed  Google Scholar 

  75. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746 (2007).

    CAS  PubMed  Google Scholar 

  76. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    CAS  PubMed  Google Scholar 

  77. Pouille, F. & Scanziani, M. Routing of spike series by dynamic circuits in the hippocampus. Nature 429, 717–723 (2004). This study combined various approaches to identify distinct properties of two different types of feedback inhibition that target different dendritic domains of CA1 neurons.

    CAS  PubMed  Google Scholar 

  78. Andrasfalvy, B. K. & Mody, I. Differences between the scaling of miniature IPSCs and EPSCs recorded in the dendrites of CA1 mouse pyramidal neurons. J. Physiol. 576, 191–196 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, H. G., Beierlein, M. & Connors, B. W. Inhibitory control of excitable dendrites in neocortex. J. Neurophysiol. 74, 1810–1814 (1995).

    CAS  PubMed  Google Scholar 

  80. Miles, R., Toth, K., Gulyas, A. I., Hajos, N. & Freund, T. F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823 (1996).

    CAS  PubMed  Google Scholar 

  81. Perez-Garci, E., Gassmann, M., Bettler, B. & Larkum, M. E. The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50, 603–616 (2006). This study revealed that dendritic GABA B -mediated inhibition of dendritic Ca2+ channels inhibits dendritic Ca2+ spikes in the apical dendrites of layer V neurons.

    CAS  PubMed  Google Scholar 

  82. Szabadics, J. et al. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311, 233–235 (2006).

    CAS  PubMed  Google Scholar 

  83. Freund, T. F. Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003).

    CAS  PubMed  Google Scholar 

  84. Mann, E. O. & Paulsen, O. Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci. 30, 343–349 (2007).

    CAS  PubMed  Google Scholar 

  85. Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    CAS  PubMed  Google Scholar 

  86. Staff, N. P., Jung, H. Y., Thiagarajan, T., Yao, M. & Spruston, N. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. J. Neurophysiol. 84, 2398–2408 (2000).

    CAS  PubMed  Google Scholar 

  87. Wong, R. K. & Prince, D. A. Afterpotential generation in hippocampal pyramidal cells. J. Neurophysiol. 45, 86–97 (1981).

    CAS  PubMed  Google Scholar 

  88. Jung, H. Y., Staff, N. P. & Spruston, N. Action potential bursting in subicular pyramidal neurons is driven by a calcium tail current. J. Neurosci. 21, 3312–3321 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Metz, A. E., Jarsky, T., Martina, M. & Spruston, N. R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. J. Neurosci. 25, 5763–5773 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yue, C. & Yaari, Y. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J. Neurosci. 24, 4614–4624 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, W. & Linden, D. J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nature Rev. Neurosci. 4, 885–900 (2003).

    CAS  Google Scholar 

  92. Lemon, N. & Turner, R. W. Conditional spike backpropagation generates burst discharge in a sensory neuron. J. Neurophysiol. 84, 1519–1530 (2000).

    CAS  PubMed  Google Scholar 

  93. Magee, J. C. & Carruth, M. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 82, 1895–1901 (1999).

    CAS  PubMed  Google Scholar 

  94. Williams, S. R. & Stuart, G. J. Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J. Physiol. 521, 467–482 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999). In this study, triple recordings (one somatic and two dendritic electrodes) showed that coincident synaptic activation and a backpropagating action potential produced a dendritic Ca2+ spike and a burst of action potentials.

    CAS  PubMed  Google Scholar 

  96. Yue, C. & Yaari, Y. Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. J. Neurophysiol. 95, 3480–3495 (2006).

    CAS  PubMed  Google Scholar 

  97. Metz, A. E., Spruston, N. & Martina, M. Dendritic D-type potassium currents inhibit the spike afterdepolarization in rat hippocampal CA1 pyramidal neurons. J. Physiol. 581, 175–187 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pinsky, P. F. & Rinzel, J. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1, 39–60 (1994).

    CAS  PubMed  Google Scholar 

  99. Kim, H. G. & Connors, B. W. Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J. Neurosci. 13, 5301–5311 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mainen, Z. F. & Sejnowski, T. J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).

    CAS  PubMed  Google Scholar 

  101. Bastian, J. & Nguyenkim, J. Dendritic modulation of burst-like firing in sensory neurons. J. Neurophysiol. 85, 10–22 (2001).

    CAS  PubMed  Google Scholar 

  102. Traub, R. D., Miles, R. & Jefferys, J. G. Synaptic and intrinsic conductances shape picrotoxin-induced synchronized after-discharges in the guinea-pig hippocampal slice. J. Physiol. 461, 525–547 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wong, R. K. & Prince, D. A. Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res. 159, 385–390 (1978).

    CAS  PubMed  Google Scholar 

  104. Schwartzkroin, P. A. & Slawsky, M. Probable calcium spikes in hippocampal neurons. Brain Res. 135, 157–161 (1977).

    CAS  PubMed  Google Scholar 

  105. Johnston, D., Magee, J. C., Colbert, C. M. & Cristie, B. R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    CAS  PubMed  Google Scholar 

  106. Häusser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    PubMed  Google Scholar 

  107. Magee, J. C. in Dendrites (eds Stuart, G., Spruston, N. & Häusser, M.) 225–250 (Oxford Univ. Press, Oxford, 2008).

    Google Scholar 

  108. Hoffman, D. A., Magee, J. C., Colbert, C. M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    CAS  PubMed  Google Scholar 

  109. Bekkers, J. M. Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. 525, 611–620 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Korngreen, A. & Sakmann, B. Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J. Physiol. 525, 621–639 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Magee, J. C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Williams, S. R. & Stuart, G. J. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).

    CAS  PubMed  Google Scholar 

  113. Berger, T., Larkum, M. E. & Luscher, H. R. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).

    CAS  PubMed  Google Scholar 

  114. Lorincz, A., Notomi, T., Tamas, G., Shigemoto, R. & Nusser, Z. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nature Neurosci. 5, 1185–1193 (2002). In this study, antibody staining revealed a strong somatodendritic gradient in the distribution of HCN channels in hippocampal and neocortical pyramidal neurons.

    PubMed  Google Scholar 

  115. Magee, J. C. Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nature Neurosci. 2, 508–514 (1999).

    CAS  PubMed  Google Scholar 

  116. Williams, S. R. & Stuart, G. J. Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J. Neurosci. 23, 7358–7367 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Angelo, K., London, M., Christensen, S. R. & Hausser, M. Local and global effects of Ih distribution in dendrites of mammalian neurons. J. Neurosci. 27, 8643–8653 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Schwindt, P. & Crill, W. Equivalence of amplified current flowing from dendrite to soma measured by alteration of repetitive firing and by voltage clamp in layer 5 pyramidal neurons. J. Neurophysiol. 76, 3731–3739 (1996).

    CAS  PubMed  Google Scholar 

  119. Lipowsky, R., Gillessen, T. & Alzheimer, C. Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. J. Neurophysiol. 76, 2181–2191 (1996).

    CAS  PubMed  Google Scholar 

  120. Cash, S. & Yuste, R. Input summation by cultured pyramidal neurons is linear and position-independent. J. Neurosci. 18, 10–15 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cash, S. & Yuste, R. Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22, 383–394 (1999).

    CAS  PubMed  Google Scholar 

  122. Schwindt, P. C. & Crill, W. E. Modification of current transmitted from apical dendrite to soma by blockade of voltage- and Ca2+-dependent conductances in rat neocortical pyramidal neurons. J. Neurophysiol. 78, 187–198 (1997).

    CAS  PubMed  Google Scholar 

  123. Stuart, G. & Sakmann, B. Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076 (1995).

    CAS  PubMed  Google Scholar 

  124. Amitai, Y., Friedman, A., Connors, B. W. & Gutnick, M. J. Regenerative activity in apical dendrites of pyramidal cells in neocortex. Cereb. Cortex 3, 26–38 (1993).

    CAS  PubMed  Google Scholar 

  125. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23, 8558–8567 (2003). This study used dendritic recordings and Ca2+ imaging to identify the excitable properties of layer II/III pyramidal neurons in vitro and in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kampa, B. M. & Stuart, G. J. Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J. Neurosci. 26, 7424–7432 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Nevian, T., Larkum, M. E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature Neurosci. 10, 206–214 (2007).

    CAS  PubMed  Google Scholar 

  128. Antic, S. D. Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J. Physiol. 550, 35–50 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Frick, A., Magee, J., Koester, H. J., Migliore, M. & Johnston, D. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 3243–3250 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gasparini, S., Losonczy, A., Chen, X., Johnston, D. & Magee, J. C. Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons. J. Physiol. 580, 787–800 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Migliore, M., Hoffman, D. A., Magee, J. C. & Johnston, D. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J. Comput. Neurosci. 7, 5–15 (1999).

    CAS  PubMed  Google Scholar 

  132. Migliore, M., Ferrante, M. & Ascoli, G. A. Signal propagation in oblique dendrites of CA1 pyramidal cells. J. Neurophysiol. 94, 4145–4155 (2005).

    PubMed  Google Scholar 

  133. Vetter, P., Roth, A. & Hausser, M. Propagation of action potentials in dendrites depends on dendritic morphology. J. Neurophysiol. 85, 926–937 (2001). This study used computational modelling to describe how morphology affects action-potential propagation in realistic dendritic trees.

    CAS  PubMed  Google Scholar 

  134. Stuart, G. J. & Hausser, M. Dendritic coincidence detection of EPSPs and action potentials. Nature Neurosci. 4, 63–71 (2001).

    CAS  PubMed  Google Scholar 

  135. Golding, N. L., Kath, W. L. & Spruston, N. Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J. Neurophysiol. 86, 2998–3010 (2001).

    CAS  PubMed  Google Scholar 

  136. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    CAS  PubMed  Google Scholar 

  137. Stuart, G., Schiller, J. & Sakmann, B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. 505, 617–632 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Larkum, M. E., Waters, J., Sakmann, B. & Helmchen, F. Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J. Neurosci. 27, 8999–9008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Spruston, N., Stuart, G. & Häusser, M. in Dendrites 351–399 (Oxford Univ. Press, Oxford, 2008).

    Google Scholar 

  140. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. 505, 605–616 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Golding, N. L., Jung, H. Y., Mickus, T. & Spruston, N. Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J. Neurosci. 19, 8789–8798 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rhodes, P. The properties and implications of NMDA spikes in neocortical pyramidal cells. J. Neurosci. 26, 6704–6715 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Schiller, J., Major, G., Koester, H. J. & Schiller, Y. NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289 (2000). This study used glutamate uncaging to identify NMDA spikes in the basal dendrites of layer V pyramidal neurons.

    CAS  PubMed  Google Scholar 

  144. Schiller, J. & Schiller, Y. NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr. Opin. Neurobiol. 11, 343–348 (2001).

    CAS  PubMed  Google Scholar 

  145. Ariav, G., Polsky, A. & Schiller, J. Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 7750–7758 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Milojkovic, B. A., Radojicic, M. S., Goldman-Rakic, P. S. & Antic, S. D. Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree. J. Physiol. 558, 193–211 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Milojkovic, B. A., Zhou, W. L. & Antic, S. D. Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. J. Physiol. 585, 447–468 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wei, D. S. et al. Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293, 2272–2275 (2001).

    CAS  PubMed  Google Scholar 

  149. Cai, X. et al. Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44, 351–364 (2004).

    CAS  PubMed  Google Scholar 

  150. Oakley, J. C., Schwindt, P. C. & Crill, W. E. Initiation and propagation of regenerative Ca2+-dependent potentials in dendrites of layer 5 pyramidal neurons. J. Neurophysiol. 86, 503–513 (2001).

    CAS  PubMed  Google Scholar 

  151. Schwindt, P. C. & Crill, W. E. Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. J. Neurophysiol. 77, 2466–2483 (1997).

    CAS  PubMed  Google Scholar 

  152. Gasparini, S. & Magee, J. C. State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J. Neurosci. 26, 2088–2100 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Golding, N. L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200 (1998).

    CAS  PubMed  Google Scholar 

  154. Kamondi, A., Acsady, L. & Buzsaki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928 (1998). This study used dendritic recordings from CA1 pyramidal neurons in vivo to identify events consistent with backpropagating action potentials and dendritic spikes.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Polsky, A., Mel, B. W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nature Neurosci. 7, 621–627 (2004). In this study, confocal imaging and dual-site synaptic stimulation identified nonlinear summation of synaptic inputs onto the same branch through dendritic spikes. The authors proposed a two-layer network for synaptic integration in pyramidal neurons.

    CAS  PubMed  Google Scholar 

  156. Jarsky, T., Roxin, A., Kath, W. L. & Spruston, N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature Neurosci. 8, 1667–1676 (2005). In this study, the activation of mid-apical synapses facilitated the forward propagation of dendritic spikes initiated in the apical tuft of CA1 pyramidal neurons; thus, a coincidence-detection mechanism for two distinct synaptic inputs onto different dendritic domains was identified.

    CAS  PubMed  Google Scholar 

  157. Rhodes, P. A. & Llinas, R. R. Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex. J. Physiol. 536, 167–187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Remy, S. & Spruston, N. Dendritic spikes induce single-burst long-term potentiation. Proc. Natl Acad. Sci. USA 104, 17192–17197 (2007). This study demonstrated that activation of CA3 axons in a single burst can lead to LTP that is induced by a single dendritic spike — no action-potential firing is required. This might be an important cellular mechanism for rapid information storage.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Mel, B. W. Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101 (1993).

    CAS  PubMed  Google Scholar 

  160. Poirazi, P., Brannon, T. & Mel, B. W. Pyramidal neuron as two-layer neural network. Neuron 37, 989–999 (2003).

    CAS  PubMed  Google Scholar 

  161. Larkum, M. E., Kaiser, K. M. & Sakmann, B. Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc. Natl Acad. Sci. USA 96, 14600–14604 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    CAS  PubMed  Google Scholar 

  163. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    CAS  PubMed  Google Scholar 

  164. Sjostrom, P. J. & Hausser, M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51, 227–238 (2006). This study demonstrated distance-dependent LTD and LTP induction rules in layer V neurons: high-frequency pairing of distal synapses with action potentials leads to LTD, but this can be converted to LTP if the backpropagating action potential is amplified by dendritic depolarization.

    CAS  PubMed  Google Scholar 

  165. Watanabe, S., Hoffman, D. A., Migliore, M. & Johnston, D. Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc. Natl Acad. Sci. USA 99, 8366–8371 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Golding, N. L., Staff, N. P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002). This study showed that synapses in the apical tuft of CA1 neurons are not potentiated by pairing with action potentials, but by dendritic spikes, independently of action-potential firing.

    CAS  PubMed  Google Scholar 

  167. Kampa, B. M., Letzkus, J. J. & Stuart, G. J. Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity. Trends Neurosci. 30, 456–463 (2007).

    CAS  PubMed  Google Scholar 

  168. Kampa, B., Letzkus, J. J. & Stuart, G. Requirement of dendritic calcium spikes for induction of spike-timing dependent synaptic plasticity. J. Physiol. 574, 283–290 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Letzkus, J. J., Kampa, B. M. & Stuart, G. J. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J. Neurosci. 26, 10420–10429 (2006). This study demonstrated the importance of bursts and BAC spikes in the induction of LTP at distal dendritic synapses on layer V neurons. The result was distance-dependent timing rules for synaptic plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wittenberg, G. M. & Wang, S. S. Malleability of spike-timing-dependent plasticity at the CA3–CA1 synapse. J. Neurosci. 26, 6610–6617 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Pike, F. G., Meredith, R. M., Olding, A. W. & Paulsen, O. Postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J. Physiol. 518, 571–576 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Holthoff, K., Kovalchuk, Y., Yuste, R. & Konnerth, A. Single-shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex. J. Physiol. 560, 27–36 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Stiefel, K. M., Tennigkeit, F. & Singer, W. Synaptic plasticity in the absence of backpropagating spikes of layer II inputs to layer V pyramidal cells in rat visual cortex. Eur. J. Neurosci. 21, 2605–2610 (2005).

    PubMed  Google Scholar 

  174. Lisman, J. & Spruston, N. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nature Neurosci. 8, 839–841 (2005).

    CAS  PubMed  Google Scholar 

  175. Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E. & Alonso, A. A. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002).

    CAS  PubMed  Google Scholar 

  176. Larkum, M. E., Watanabe, S., Nakamura, T., Lasser-Ross, N. & Ross, W. N. Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons. J. Physiol. 549, 471–488 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Nakamura, T., Barbara, J. G., Nakamura, K. & Ross, W. N. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24, 727–737 (1999). This study showed that coincident synaptic activation of mGluRs and backpropagating action potentials leads to inositol-1,4,5-trisphosphate-receptor-mediated Ca2+ waves in the soma and proximal dendrites of CA1 neurons.

    CAS  PubMed  Google Scholar 

  178. Ross, W. N., Nakamura, T., Watanabe, S., Larkum, M. & Lasser-Ross, N. Synaptically activated Ca2+ release from internal stores in CNS neurons. Cell. Mol. Neurobiol. 25, 283–295 (2005).

    CAS  PubMed  Google Scholar 

  179. Hasselmo, M. E. & Schnell, E. Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J. Neurosci. 14, 3898–3914 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Gordon, U., Polsky, A. & Schiller, J. Plasticity compartments in basal dendrites of neocortical pyramidal neurons. J. Neurosci. 26, 12717–12726 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Frick, A. & Johnston, D. Plasticity of dendritic excitability. J. Neurobiol. 64, 100–115 (2005).

    CAS  PubMed  Google Scholar 

  182. Frick, A., Magee, J. & Johnston, D. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature Neurosci. 7, 126–135 (2004). This study demonstrated that LTP induction in CA1 neurons also produces localized increases in dendritic excitability through downregulation of A-type K+ channels.

    CAS  PubMed  Google Scholar 

  183. Spruston, N. & Kath, W. L. Dendritic arithmetic. Nature Neurosci. 7, 567–569 (2004).

    CAS  PubMed  Google Scholar 

  184. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    CAS  PubMed  Google Scholar 

  185. Frank, L. M., Brown, E. N. & Stanley, G. B. Hippocampal and cortical place cell plasticity: implications for episodic memory. Hippocampus 16, 775–784 (2006).

    PubMed  Google Scholar 

  186. Koch, C. & Zador, A. The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Swindale, N. V. Dendritic spines only connect. Trends Neurosci. 4, 240–241 (1981).

    Google Scholar 

  188. Stepanyants, A., Hof, P. R. & Chklovskii, D. B. Geometry and structural plasticity of synaptic connectivity. Neuron 34, 275–288 (2002).

    CAS  PubMed  Google Scholar 

  189. Nimchinsky, E. A., Sabatini, B. L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    CAS  PubMed  Google Scholar 

  190. Tsay, D. & Yuste, R. On the electrical function of dendritic spines. Trends Neurosci. 27, 77–83 (2004).

    CAS  PubMed  Google Scholar 

  191. Carnevale, N. T. & Johnston, D. Electrophysiological characterization of remote chemical synapses. J. Neurophysiol. 47, 606–621 (1982).

    CAS  PubMed  Google Scholar 

  192. Araya, R., Eisenthal, K. B. & Yuste, R. Dendritic spines linearize the summation of excitatory potentials. Proc. Natl Acad. Sci. USA 103, 18799–18804 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Araya, R., Jiang, J., Eisenthal, K. B. & Yuste, R. The spine neck filters membrane potentials. Proc. Natl Acad. Sci. USA 103, 17961–17966 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Svoboda, K., Tank, D. W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

    CAS  PubMed  Google Scholar 

  195. Bloodgood, B. L. & Sabatini, B. L. Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310, 866–869 (2005).

    CAS  PubMed  Google Scholar 

  196. Bloodgood, B. L. & Sabatini, B. L. Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron 53, 249–260 (2007).

    CAS  PubMed  Google Scholar 

  197. Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967).

    CAS  PubMed  Google Scholar 

  198. Jaffe, D. B. & Carnevale, N. T. Passive normalization of synaptic integration influenced by dendritic architecture. J. Neurophysiol. 82, 3268–3285 (1999).

    CAS  PubMed  Google Scholar 

  199. Cauller, L. Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behav. Brain Res. 71, 163–170 (1995).

    CAS  PubMed  Google Scholar 

  200. Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank the following people for helpful discussions and/or comments on the manuscript: D. Ferster, J. Hardie, M. Häusser, B. Kath, G. Maccaferri, D. Nicholson, I. Raman, S. Remy, J. Waters and C. Woolley. Supported by US National Institutes of Health grants NS-035180 and NS-046064.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Nelson Spruston's homepage

Scholarpedia article on pyramidal neurons

Wikipedia article on pyramidal neurons

Inventory of digitally reconstructed neurons

Searchable database of neuronal properties

Images of cortical neurons

Glossary

Receptive field

The area of the sensory space in which stimulus presentation leads to a response from a particular sensory neuron. Other stimulus properties, such as the optimal orientation of a bar of light, might further define the receptive-field properties of a neuron. These properties can be described in increasingly complex terms as more is learned about the conditions that are required for a particular neuron to fire.

Single-unit recording

A method that is used to measure the activity of individual neurons in awake, behaving animals.

Glutamate uncaging

The release of free glutamate by the activation of a 'caged' (chelated) glutamate compound using light.

Postsynaptic density

(PSD). An electron-dense thickening underneath the postsynaptic membrane at excitatory synapses. PSDs contain receptors, other signalling molecules and structural proteins linked to the actin cytoskeleton.

Silent synapse

A synapse that produces no detectable EPSP in the soma. Distal synapses might produce some local dendritic depolarization, but nevertheless be difficult to detect in the soma.

Input impedance

The resistance to the flow of current provided as an input to a neuron. This property depends on the resistance and capacitance of the structure (for example, the cell body or the dendritic spine) into which the input current is applied.

Dendritic spike

A spike initiated in the dendrites.

Action-potential threshold

The membrane potential at which an action potential is generated — usually approximately 20 mV above the resting potential.

Afterhyperpolarization

Membrane hyperpolarization following an action potential.

Afterdepolarization

Membrane depolarization following an action potential.

Hyperpolarization-activated cation channels

(HCN channels). Membrane cation channels that carry a current called Ih. The current is activated by hyperpolarization but causes depolarization. Some Ih is activated at rest, thus reducing input impedance and depolarizing the resting potential.

Backpropagating action potential

An action potential that is initiated in the axon and then propagates back into the dendrites.

Backpropagation-activated Ca2+ spike

(BAC spike). A spike that occurs in the distal apical dendrites of layer V pyramidal neurons during coincident synaptic stimulation and action-potential backpropagation.

Up and down states

Two distinct cortical states that are defined by relatively depolarized membrane potentials and lots of action-potential firing (the up state) versus hyperpolarized membrane potentials and very little firing (the down state). Although these states are often determined from the membrane potential in individual cells, groups of cells tend to transit between these states synchronously, so the state is a reflection of local cortical activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9, 206–221 (2008). https://doi.org/10.1038/nrn2286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2286

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing