Abstract
Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons—electromagnetic excitations coupled to electron charge density waves on metal–dielectric interfaces or localized on metallic nanostructures—enable the confinement of light to scales far below that of conventional optics. We review recent progress in the experimental and theoretical investigation of the quantum properties of surface plasmons, their role in controlling light–matter interactions at the quantum level and potential applications. Quantum plasmonics opens up a new frontier in the study of the fundamental physics of surface plasmons and the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£169.00 per year
only £14.08 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Takahara, J., Yamagisha, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).
Gramotnev, D. K. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).
Schuller, J. A. et al. Plasmonics for extreme light concentration. Nature Mater. 9, 193–204 (2010).
Berini, I. & De Leon, Surface plasmon-polariton amplifiers and lasers. Nature Photon. 6, 16–24 (2011).
Ma, R-M., Oulton, R. F., Sorger, V. J. & Zhang, X. Plasmon lasers: Coherent light source at molecular scales. Laser Photon. Rev. 7, 1–21 (2012).
Hess, O. et al. Active nanoplasmonic metamaterials. Nature Mater. 11, 573–584 (2012).
Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).
Giannini, V., Fernández-Dominguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantenas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011).
Jacob, Z. & Shalaev, V. M. Plasmonics goes quantum. Science 334, 463–464 (2011).
Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).
Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).
Kolesov, R. et al. Wave-particle duality of single surface plasmon polaritons. Nature Phys. 5, 470–474 (2009).
Koenderink, A. F. Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett. 9, 4228–4233 (2009).
Chen, Y., Lodahl, P. & Koenderink, A. F. Dynamically reconfigurable directionality of plasmon-based single photon sources. Phys. Rev. B 82, 081402 (2010).
Gan, C. H., Hugonin, J. P. & Lalanne, P. Proposal for compact solid-state III–V single-plasmon sources. Phys. Rev. X 2, 021008 (2012).
de Leon, N. P. et al. Tailoring light–matter interaction with a nanoscale plasmon resonator. Phys. Rev. Lett. 108, 226803 (2012).
Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).
Kolchin, P., Oulton, R. F. & Zhang, X. Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level. Phys. Rev. Lett. 106, 113601 (2011).
Frank, R. Coherent control of Floquet-mode dressed plasmon polaritons. Phys. Rev. B 85, 195463 (2012).
Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009).
Pines, D. A collective description of electron interactions: IV. Electron interaction in metals. Phys. Rev. 92, 626–636 (1953).
Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555–1567 (1958).
Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).
Elson, J. M. & Ritchie, R. H. Photon interactions at a rough metal surface. Phys. Rev. B 4, 4129–4138 (1971).
Nakamura, Y. O. Quantization of non-radiative surface plasma oscillations. Prog. Theor. Phys. 70, 908–919 (1983).
Tassin, P., Koschny, T., Kafesaki, M. & Soukoulis, C. M. A Comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photon. 6, 259–264 (2012).
Huttner, B. & Barnett, S. M. Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 46, 4306–4322 (1992).
Philbin, T. G. Canonical quantization of macroscopic electromagnetism. New. J. Phys. 12, 123008 (2010).
Crowell, J. & Ritchie, R. H. Radiative decay of Coulomb-stimulated plasmons in spheres. Phys. Rev. 172, 436–440 (1968).
Trügler, A. & Hohenester, U. Strong coupling between a metallic nanoparticle and a single molecule. Phys. Rev. B 77, 115403 (2008).
Waks, E. & Sridharan, D. Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Phys. Rev. A 82, 043845 (2010).
Archambault, A., Marquier, F., Greffet, J-J. & Arnold, C. Quantum theory of spontaneous and stimulated emission of surface plasmons. Phys. Rev. B 82, 035411 (2010).
Tame, M. S. et al. Single-photon excitation of surface plasmon polaritons. Phys. Rev. Lett. 101, 190504 (2008).
Takahara, J., Kusunoki, F. & Kobayashi, T. Guiding of two-dimensional optical waves in a negative dielectric gap having a dielectric core. Proc. SPIE 5928, 1–10 (2005).
Takahara, J. in Plasmonic Nanoguides and Circuits (ed. Bozhevolnyi, S. I.) Ch. 2 (Pan Stanford Publishing, 2009).
Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).
Barnes, W. L. Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998).
Hecker, N. E., Höpfel, R. A., Sawaki, N., Maier, T. & Strasser, G. Surface plasmon-enhanced photoluminescene from a single quantum well. Appl. Phys. Lett. 75, 1577–1579 (1999).
Neogi, A. et al. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 66, 153305 (2002).
Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 674 (1946).
Yeung, M. S. & Gustafson, T. K. Spontaneous emission near an absorbing dielectric surface. Phys. Rev. A 54, 5227–5242 (1996).
Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).
Moreno, E., García, F. J., Erni, D., Ignacio Cirac, J. & Martín-Moreno, L. Theory of plasmon-assisted transmission of entangled photons. Phys. Rev. Lett. 92, 236801 (2004).
Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005).
Fasel, S., Halder, M., Gisin, N. & Zbinden, H. Quantum superposition and entanglement of mesoscopic plasmons. New J. Phys. 8, 13–20 (2006).
Ren, X. F., Guo, G. P., Huang, Y. F., Li, C. F. & Guo, G. C. Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state. Europhys. Lett. 76, 753–759 (2006).
Guo, G. P. et al. Observation of two-photon coherence in plasmon-assisted transmission. Phys. Lett. A 361, 218–222 (2007).
Huck, A. et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett. 102, 246802 (2009).
Di Martino, G. et al. Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett. 12, 2504–2508 (2012).
Fujii, G. et al. Preservation of photon indistinguishability after transmission through surface-plasmon-polariton waveguide. Opt. Lett. 37, 1535–1537 (2012).
Halperin, W. P. Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533–606 (1986).
Genzel, L., Martin, T. P. & Kreibig, U. Dielectric function and plasma resonances of small metal particles. Z. Physik B 21, 339–346 (1975).
Keller, O., Xiao, M. & Bozhevolnyi, S. Optical diamagnetic polarizability of a mesoscopic metallic sphere: Transverse self-field approach. Opt. Commun. 102, 238–244 (1993).
Halas, N. J., Lal, S., Chang, W-S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).
Kreibig, U. & Genzel, L. Optical absorption of small metallic particles. Surf. Sci. 156, 678–700 (1985).
Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).
Haberland, H. Looking from both sides. Nature 494, E1 (2013).
Ouyang, F., Batson, P. E. & Isaacson, M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992).
Prodan, E. & Nordlander, P. Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett. 3, 543–547 (2003).
Prodan, E., Nordlander, P. & Halas, N. J. Electronic structure and optical properties of gold nanoshells. Nano Lett. 3, 1411–1415 (2003).
Zuloaga, J., Prodan, E. & Nordlander, P. Quantum plasmonics: Optical properties and tenability of metallic nanorods. ACS Nano 4, 5269–5276 (2010).
Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009).
Townsend, E. & Bryant, G. W. Plasmonic properties of metallic nanoparticles: The effects of size quantization. Nano Lett. 12, 429–434 (2012).
Yuan, Z. & Gao, S. Linear-response study of plasmon excitation in metallic thin films: Layer-dependent hybridization and dispersion. Phys. Rev. B 73, 155411 (2006).
Jaklevic, R. C., Lambe, J., Mikkor, M. & Vassell, W. C. Observation of electron standing waves in a crystalline box. Phys. Rev. Lett. 26, 88–92 (1971).
Thongrattanasiri, S., Manjavacas, A. & Garcia de Abajo, F. J. Quantum finite-size effects in graphene plasmons. ACS Nano 6, 1766–1775 (2012).
Mao, L., Li, Z., Wu, B. & Xu, H. Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering. Appl. Phys. Lett. 94, 243102 (2009).
Savage, K. J. et al. Revealing the quantum regime in tunelling plasmonics. Nature 491, 574–577 (2012).
Esteban, R., Borisov, A. G., Nordlander, P. & Aizpurua, J. Bridging quantum and classical plasmonics. Nature Commun. 3, 825 (2012).
Scholl, J. A., Garcia-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564–569 (2013).
Marinica, D. C., Kazansky, A. K., Nordlander, P., Aizpurua, J. & Borisov, A. G. Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333–1339 (2012).
Wu, L. et al. Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles. ACS Nano 7, 707–716 (2013).
Monroe, C. Quantum information processing with atoms and photons. Nature 416, 238–246 (2002).
Drexhage, K. H., Kuhn, H. & Schäfer, F. P. Variation of the fluorescence decay time of a molecule in front of a mirror. Ber. Bunsenges. Phys. Chem. 72, 329 (1968).
Chance, R. R., Prock, A. & Silbey, R. Lifetime of an emitting molecule near a partially reflecting surface. J. Chem. Phys. 60, 2744–2748 (1974).
Gersten, J. & Nitzan, A. Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 75, 1139–1152 (1981).
Barnes, W. L. Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. J. Lightw. Technol. 17, 2170–2182 (1999).
Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).
Yannopapas, V., Paspalakis, E. & Vitanov, N. V. Plasmon-induced enhancement of quantum interference near metallic nanostructures. Phys. Rev. Lett. 103, 063602 (2009).
Hatef, A. & Singh, M. R. Plasmonic effect on quantum coherence and interference in metallic photonic crystals doped with quantum dots. Phys. Rev. A 81, 063816 (2010).
Huck, A., Kumar, S., Shakoor, A. & Andersen, U. L. Controlled coupling of single nitrogen-vacancy center to a silver nanowire. Phys. Rev. Lett. 106, 096801 (2011).
Fedutik, Y., Temnov, V. V., Schöps, O., Woggon, U. & Artemyev, M. V. Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).
Falk, A. L. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475–479 (2009).
Ropp, A. et al. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot. Nature Commun. 4, 1447 (2013).
Pfaff, W., Vos, A. & Hanson, R. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters. J. Appl. Phys. 113, 024310 (2013).
Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).
Sorger, V. J. et al. Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap. Nano Lett. 11, 4907–4911 (2011).
Jun, Y. C., Kekatpure, R. D., White, J. S. & Brongersma, M. L. Nonresonant enhancement of spontaneous emission in metal–dielectric–metal plasmon waveguide structures. Phys. Rev. B 78, 153111 (2008).
Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–911 (2010).
Farahani, J. N., Pohl, D. W., Eisler, H-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).
Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2012).
Koenderink, A. F. On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208–4210 (2010).
Chen, Y., Wubs, M., Mørk, J. & Koenderink, A. F. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides. New J. Phys. 13, 103010 (2011).
Rice, P. R. & Brecha, R. J. Cavity induced transparency. Opt. Commun. 126, 230–235 (1995).
Ridolfo, A., Di Stefano, O., Fina, N., Saija, R. & Savasta, S. Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics. Phys. Rev. Lett. 105, 263601 (2010).
Zhang, W., Govorov, A. O. & Bryant, G. W. Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett. 97, 146804 (2006).
Dintinger, J., Klein, S., Bustos, F., Barnes, W. L. & Ebbesen, T. W. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005).
Fofang, N. T. et al. Plexitonic nanoparticles: Plasmon-exciton coupling in nanoshell-J aggregate complexes. Nano Lett. 8, 3481–3487 (2008).
Passmore, B. S. et al. Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots. Nano Lett. 11, 338–342 (2011).
Vasa, P. et al. Real time observations of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photon. 7, 128–132 (2013).
Savasta, S. et al. Interaction nanopolaritons: Vacuum Rabi splitting with a single quantum dot in the center of a dimer. ACS Nano 4, 6369–6376 (2010).
Van Vlack, C., Kristensen, P. T. & Hughes, S. Spontaneous emission spectra and quantum light–matter interactions from a strongly coupled quantum dot metal nanoparticle system. Phys. Rev. B 85, 075303 (2012).
Gonzalez-Tudela, A., Rodríguez, F. J., Quiroga, L. & Tejedor, C. Dissipative dynamics of a solid-state qubit coupled to surface plasmons: From Markov to non-Markov regimes. Phys. Rev. B 82, 115334 (2010).
Dung, H., Knöll, L. & Welsch, D. Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics. Phys. Rev. A 57, 3931–3942 (1998).
Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).
Gong, Y. & Vučković, J. Design of plasmon cavities for solid-state cavity quantum electrodynamics applications. Appl. Phys. Lett. 90, 033133 (2007).
Min, B. et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009).
Xiao, Y. et al. Strongly enhanced light matter interaction in a hybrid photonic-plasmonic resonator. Phys. Rev. A 85, 031805 (2009).
Choy, J. T. et al. Enhanced single-photon emission from a diamond–silver aperture. Nature Photon. 5, 738–743 (2011).
Russell, K. J., Liu, T., Cui, S. & Hu, E. L. Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photon. 6, 459–462 (2012).
Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).
Manjavacas, A., Nordlander, P. & García de Abajo, F. J. Plasmon blockade in nanostructured graphene. ACS Nano 6, 1724–1731 (2012).
Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
Dzsotjan, D., Kaestel, J. & Fleischhauer, M. Dipole–dipole shift of quantum emitters coupled to surface plasmons of a nanowire. Phys. Rev. B 84, 075419 (2011).
Pustovit, V. N. & Shahnazyan, T. V. Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect. Phys. Rev. Lett. 102, 077401 (2009).
Martín-Cano, D. et al. Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Phys. Rev. B 84, 235306 (2011).
Lin, Z-R. et al. Quantum bus of metal nanoring with surface plasmon polaritons. Phys. Rev. B 82, 241401 (2010).
Chen, G-Y., Lambert, N., Chou, C-H., Chen, Y-N. & Nori, F. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement. Phys. Rev. B 84, 045310 (2011).
Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).
Ma, R., Oulton, R. F., Sorger, V., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2011).
Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).
Moiseev, S. A., Kamli, A. & Sanders, B. C. Low-loss nonlinear polaritonics. Phys. Rev. A. 81, 033839 (2010).
Siomau, M., Kamli, A. A., Moiseev, A. A. & Sanders, B. C. Entanglement creation with negative index metamaterials. Phys. Rev. A 85, 050303 (2012).
Wang, S. M. et al. Hong–Ou–Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial. Opt. Lett. 20, 5213–5218 (2012).
Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).
Chang, D. E. et al. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 103, 123004 (2009).
Stehle, C. et al. Plasmonically tailored micropotenials for ultracold atoms. Nature Photon. 5, 494–498 (2011).
Gullans, M. et al. Nanoplasmonic Lattices for Ultracold atoms. Phys. Rev. Lett. 109, 235309 (2012).
Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).
De Leon, N. P., Lukin, M. D. & Park, H. Quantum plasmonic circuits. IEEE Sel. Top. Quant. Elec. 18, 1781–1791 (2012).
Celebrano, M. et al. Efficient coupling of single photons to single plasmons. Opt. Exp. 18, 13829–13835 (2010).
Heeres, R. W. et al. On-chip single plasmon detection. Nano Lett. 10, 661–664 (2010).
Cuche, A., Mollet, O., Drezet, A. & Huant, S. Deterministic quantum plasmonics. Nano Lett. 10, 4566–4570 (2011).
Koller, D. M. et al. Surface plasmon coupled electroluminescent emission. Appl. Phys. Lett. 92, 103304 (2008).
Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).
Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).
Yurke, B. & Kuang, W. Passive linear nanoscale optical and molecular electronics device synthesis from nanoparticles. Phys. Rev. A 81, 033814 (2010).
Lee, C., Tame, M. S., Lim, J. & Lee, J. Quantum plasmonics with a metal nanoparticle array. Phys, Rev. A 85, 063823 (2012).
Lee, C. et al. Robust-to-loss entanglement generation using a quantum plasmonic nanoparticle array. Preprint at http://arxiv.org/abs/1303.5092 (2013).
Ballester, D., Tame, M. S. & Kim, M. S. Quantum theory of surface plasmon polariton scattering. Phys. Rev. A 82, 012325 (2010).
Zou, C-L. et al. Broadband integrated polarization beamsplitter with surface plasmon. Opt. Lett. 36, 3630–3632 (2011).
Shapiro, J. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).
Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, 2008).
Hümmer, T., García-Vidal, F. J., Martín-Moreno, L. & Zueco, D. Weak and strong coupling regimes in plasmonic-QED. Phys. Rev. B 87, 115419 (2013).
Brune, M. et al. Quantum Rabi oscillations: A direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).
Acknowledgements
We thank J. Takahara and C. Lee for comments on the manuscript. This work was supported by the UK’s Engineering and Physical Sciences Research Council, the Leverhulme Trust, the National Research Foundation of Korea grants funded by the Korean Government (Ministry of Education, Science and Technology; grant numbers 2010-0018295 and 2010-0015059), the European Office of Aerospace Research and Development (EOARD), and the Qatar National Research Fund (Grant NPRP 4-554-1-D84). S.K.O. thanks L. Yang and F. Nori for their support.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Tame, M., McEnery, K., Özdemir, Ş. et al. Quantum plasmonics. Nature Phys 9, 329–340 (2013). https://doi.org/10.1038/nphys2615
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2615