[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias

Abstract

Genetic factors contribute to the risk of sudden death from cardiac arrhythmias. Here, positional cloning methods establish KVLQT1 as the chromosome 11-linked LQT1 gene responsible for the most common inherited cardiac arrhythmia. KVLQT1 is strongly expressed in the heart and encodes a protein with structural features of a voltage-gated potassium channel. KVLQT1 mutations are present in affected members of 16 arrhythmia families, including one intragenic deletion and ten different missense mutations. These data define KVLQT1 as a novel cardiac potassium channel gene and show that mutations in this gene cause susceptibility to ventricular tachyarrhythmias and sudden death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kannel, W.B., Cupples, A. & D'Agostino, R.B. Sudden death risk in overt coronary heart diseases: the Framingham study. Am. Heart J. 113, 799–804 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Willich, S.N. et al. Circadian variation in the incidence of sudden cardiac death in the Framingham heart study population. Am. J. Cardiol. 60, 801–806 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Trial II Investigators Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N. Engl. J. Med. 327, 227–233 (1992).

  4. Jervell, A. & Lange-Nielsen, F. Congenital deaf mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am. Heart J. 54, 59–78 (1957).

    Article  CAS  PubMed  Google Scholar 

  5. Romano, C. Congenital cardiac arrhythmias. Lancet 1, 658 (1965).

    Article  CAS  PubMed  Google Scholar 

  6. Ward, O.C. A new familial cardiac syndrome in children. J. Ir. Med. Assoc. 54, 103–106 (1964).

    CAS  PubMed  Google Scholar 

  7. Schwartz, P.J., Periti, M. & Malliani, A. The long QT syndrome. Am. Heart J. 109, 378–390 (1975).

    Article  Google Scholar 

  8. Moss, A.J. & McDonald, J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N. Engl. J. Med. 285, 903–904 (1970).

    Article  Google Scholar 

  9. Zipes, D.P. Proarrhythmic effects of antiarrhythmic drugs. Am. J. Cardiol. 59, 26E–31E (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Keating, M.T. et al. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science 252, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Keating, M.T. et al. Consistent linkage of the long QT syndrome to the Harvey ras-1 locus on chromosome 11. Am. J. Hum. Genet. 49, 1335–1339 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang, C. et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nature Genet. 8, 141–147 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Schott, J. et al. Mapping of a gene for long QT syndrome to chromosome 4q25–27. Am. J. Hum. Genet. 57, 1114–1122 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Curran, M.E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803.

    Article  CAS  PubMed  Google Scholar 

  15. Sanguinetti, M.C., Jiang, C., Curran, M.E. & Keating, M.T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the 1Kr potassium channel. Cell 81, 299–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Trudeau, M.C., Warmke, J., Ganetzky, B. & Robertson, G. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269, 92–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Q. et al. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum. Mol. Genet. 4, 1603–1607 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Wymore, R.S. et al. Genomic organization, nucleotide sequence, biophysical properties, and localization of the voltage-gated K+ channel gene KCN4A/Kv1.4 to mouse chromosome 2/human 11 p14 and mapping of KCNC1/Kv3.1 to mouse 7/human 11 p14.3–p15.2 and KCNA1/Kv1.1 to human 12p13. Genomics 20, 191–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Russell, M.W. et al. Localization of Romano-Ward long QT syndrome gene, LQT1, to the interval between tyrosine hydroxylase (TH) and D11S1349 . Am. J. Hum. Genet. 57, 503–507 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gyapay, G. et al. The 1993–94 Genethon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Tanigami, A. et al. Mapping of 262 DNA markers into 24 intervals on human chromosome 11. Am. J. Hum. Genet. 50, 56–64 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tokino, T. et al. Isolation and mapping of 62 new RFLP markers on human chromosome 11. Am. J. Hum. Genet. 48, 258–268 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pongs, O. et al. Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J. 7, 1087–1095 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Q. & Keating, M.T. Isolation of P1 insert ends by direct sequencing. BioTechniques 17, 282–284 (1994).

    CAS  PubMed  Google Scholar 

  26. MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350, 232–235 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. MacKinnon, R., Aldrich, R.W. & Lee, A.W. Functional stoichiometry of shaker potassium channel inactivation. Science 262, 757–759 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Covarrubias, M., Wei, A. & Salkoff, L., shaker, shal, shab, and shaw express independent K+ current systems. Neuron 7, 763–773 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz, P. et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation(in the press).

  30. Anderson, M.A. & Gusella, U.K. Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro 20, 856–858 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Lathrop, G.M., Lalouel, J.-M., Julier, C. & Ott, J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am. J. Hum. Genet. 37, 482–498 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Green, E.D. & Olson, M.V. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 1213–1217 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwiatowski, T.J., Zoghbi, H.Y., Ledbetter, S.A., Ellison, K.A. & Chinault, A.C. Rapid identification of yeast artificial chromosome clones by matrix pooling and crude lysate PCR. Nucl. Acids Res. 17, 7191–7192 (1990).

    Article  Google Scholar 

  34. Ochman, H., Gerber, A.S. & Hartl, D.L. Genetic application of an inverse polymerase chain reaction. Genetics 120, 621–623 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sternberg, N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Nati. Acad. Sci. USA 87, 103–107 (1990).

    Article  CAS  Google Scholar 

  36. Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning: A Laboratory Manual. Second Edition. (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  37. Burn, T.C., Connors, T.D., Klinger, K.W. & Landes, G.M. Increased exon trapping efficiencies through modifications to the pSPLS splicing vector. Gene 161, 183–187 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Buckler, A.J. et al. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc. Natl. Acad. Sci. USA 88, 4005–4009 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–104 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Marchuk, D., Drumm, M., Saulino, A. & Collins, F.S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl. Acids Res. 19, 1154 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Curran, M., Splawski, I. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12, 17–23 (1996). https://doi.org/10.1038/ng0196-17

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0196-17

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing