[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased frequency of extreme La Niña events under greenhouse warming

Abstract

The El Niño/Southern Oscillation is Earth’s most prominent source of interannual climate variability, alternating irregularly between El Niño and La Niña, and resulting in global disruption of weather patterns, ecosystems, fisheries and agriculture1,2,3,4,5. The 1998–1999 extreme La Niña event that followed the 1997–1998 extreme El Niño event6 switched extreme El Niño-induced severe droughts to devastating floods in western Pacific countries, and vice versa in the southwestern United States4,7. During extreme La Niña events, cold sea surface conditions develop in the central Pacific8,9, creating an enhanced temperature gradient from the Maritime continent to the central Pacific. Recent studies have revealed robust changes in El Niño characteristics in response to simulated future greenhouse warming10,11,12, but how La Niña will change remains unclear. Here we present climate modelling evidence, from simulations conducted for the Coupled Model Intercomparison Project phase 5 (ref. 13), for a near doubling in the frequency of future extreme La Niña events, from one in every 23 years to one in every 13 years. This occurs because projected faster mean warming of the Maritime continent than the central Pacific, enhanced upper ocean vertical temperature gradients, and increased frequency of extreme El Niño events are conducive to development of the extreme La Niña events. Approximately 75% of the increase occurs in years following extreme El Niño events, thus projecting more frequent swings between opposite extremes from one year to the next.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of observed extreme La Niña events.
Figure 2: Identification of model extreme La Niña events using 21 selected models.
Figure 3: Multi-model statistics in August–December associated with the increase in frequency of extreme La Niña events.
Figure 4: Relationship between detrended Niño4 rainfall and Niño4 SST.

Similar content being viewed by others

References

  1. Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weath. Rev. 115, 1606–1626 (1987).

    Article  Google Scholar 

  2. Bove, M. C., O’Brien, J. J., Eisner, J. B., Landsea, C. W. & Niu, X. Effect of El Niño on US landfalling hurricanes, revisited. Bull. Am. Meteorol. Soc. 79, 2477–2482 (1998).

    Article  Google Scholar 

  3. Changnon, S. A. Impacts of 1997–98 El Niño generated weather in the United States. Bull. Am. Meteorol. Soc. 80, 1819–1827 (1999).

    Article  Google Scholar 

  4. Bell, G. D. et al. Climate assessment for 1998. Bull. Am. Meteorol. Soc. 80, 1040–1040 (1999).

    Article  Google Scholar 

  5. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    Article  CAS  Google Scholar 

  6. McPhaden, M. J. El Niño: The child prodigy of 1997–98. Nature 398, 559–562 (1999).

    Article  CAS  Google Scholar 

  7. Hoerling, M. & Kumar, A. The perfect ocean for drought. Science 299, 691–694 (2003).

    Article  CAS  Google Scholar 

  8. Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).

    Article  Google Scholar 

  9. Dommenget, D., Bayr, T. & Frauen, C. Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim. Dynam. 40, 2825–2847 (2013).

    Article  Google Scholar 

  10. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Clim. Change 4, 111–116 (2014).

    Article  CAS  Google Scholar 

  11. Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502, 541–545 (2013).

    Article  CAS  Google Scholar 

  12. Santoso, A. et al. Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504, 126–130 (2013).

    Article  CAS  Google Scholar 

  13. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  14. Kiladis, G. N. & Diaz, H. F. Global climate anomalies associated with extremes in the Southern Oscillation. J. Clim. 2, 1069–1090 (1989).

    Article  Google Scholar 

  15. Hoyos, N., Escobar, J., Restrepo, J. C., Arango, A. M. & Ortiz, J. C. Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Appl. Geogr. 39, 16–25 (2013).

    Article  Google Scholar 

  16. Wu, M. C., Chang, W. L. & Leung, W. M. Impact of El Niño-Southern Oscillation events on tropical cyclone landfalling activities in the western North Pacific. J. Clim. 17, 1419–1428 (2004).

    Article  Google Scholar 

  17. Gray, W. M. Atlantic seasonal hurricane frequency: Part I: El Niño and 30-mb quasibiennial oscillation influences. Mon. Weath. Rev. 112, 1669–1683 (1984).

    Article  Google Scholar 

  18. Cole, J. E., Overpeck, J. T. & Cook, E. R. Multiyear La Niña events and persistent drought in the contiguous United States. Geophys. Res. Lett. 29, http://dx.doi.org/10.1029/2001GL013561 (2002).

  19. Takahashi, T., Nakagawa, H., Satofuka, Y. & Kawaike, K. Flood and sediment disasters triggered by 1999 rainfall in Venezuela; A river restoration plan for an alluvial fan. J. Natural Disast. Sci. 23, 65–82 (2001).

    Google Scholar 

  20. Jonkman, S. N. Global perspectives on loss of human life caused by floods. Natural Hazards 34, 151–175 (2005).

    Article  Google Scholar 

  21. Kunii, O., Nakamura, S., Abdur, R. & Wakai, S. The impact on health and risk factors of the diarrhoea epidemics in the 1998 Bangladesh floods. Public Health 116, 68–74 (2002).

    Article  CAS  Google Scholar 

  22. Del Ninno, C. & Dorosh, P. A. Averting a food crisis: Private imports and public targeted distribution in Bangladesh after the 1998 flood. Agric. Econ. 25, 337–346 (2001).

    Article  Google Scholar 

  23. Mirza, M. M. Q., Warrick, R. A., Ericksen, N. J. & Gavin, G. J. Are floods getting worse in the Ganges, Brahmaputra and Meghna basins? Environ. Hazards 3, 37–48 (2002).

    Article  Google Scholar 

  24. Kerle, N., Froger, J. L., Oppenheimer, C. & Van Wyk De Vries, B. Remote sensing of the 1998 mudflow at Casita volcano, Nicaragua. Int. J. Remote Sensing 24, 4791–4816 (2003).

    Article  Google Scholar 

  25. Cai, W. et al. More extreme swings of the South Pacific Convergence Zone due to greenhouse warming. Nature 488, 365–369 (2012).

    Article  CAS  Google Scholar 

  26. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007 (2007).

    Article  Google Scholar 

  27. Jin, F. F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    Article  Google Scholar 

  28. Meinen, C. S. & McPhaden, M. J. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Clim. 13, 3551–3559 (2000).

    Article  Google Scholar 

  29. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  30. Chung, C. T. Y. & Power, S. B. Precipitation response to La Niña and global warming in the Indo-Pacific. Clim. Dynam. 43, 3293–3307 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

W.C. and G.W. are supported by the Australian Climate Change Science Program and a CSIRO Office of Chief Executive Science Leader award. A.S. and M.H.E. are supported by the Australian Research Council. D.D. is supported by ARC project ‘Beyond the linear dynamics of the El Niño–Southern Oscillation’ (DP120101442) and ARC Centre of Excellence for Climate System Science (CE110001028). M.C. was supported by NERC/MoES SAPRISE project (NE/I022841/1). M.J.M. was supported by NOAA, and this is PMEL contribution number 4259.

Author information

Authors and Affiliations

Authors

Contributions

W.C. conceived the study, directed the analysis, and wrote the initial version of the paper in discussion with G.W. and A.S. G.W. performed the model output analysis. A.S. conducted and wrote the description of the heat budget analysis in the Supplementary Information. All authors contributed to interpreting results, discussion of the associated dynamics, and improvement of this paper.

Corresponding author

Correspondence to Wenju Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Wang, G., Santoso, A. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nature Clim Change 5, 132–137 (2015). https://doi.org/10.1038/nclimate2492

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2492

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing