[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects

Abstract

Part of the ventral temporal lobe is thought to be critical for face perception, but what determines this specialization remains unknown. We present evidence that expertise recruits the fusiform gyrus 'face area'. Functional magnetic resonance imaging (fMRI) was used to measure changes associated with increasing expertise in brain areas selected for their face preference. Acquisition of expertise with novel objects (greebles) led to increased activation in the right hemisphere face areas for matching of upright greebles as compared to matching inverted greebles. The same areas were also more activated in experts than in novices during passive viewing of greebles. Expertise seems to be one factor that leads to specialization in the face area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Greebles and sample trials from the sequential-matching task.
Figure 2: Training effect for faces and greebles in four face-specific ROIs.
Figure 3
Figure 4: Activation maps for three novices and three experts in the passive-viewing tasks with faces and greebles.

Similar content being viewed by others

References

  1. Allison, T. et al. Face recognition in human extrastriate cortex. J. Neurophysiol. 71, 821–825 (1994).

    Article  CAS  Google Scholar 

  2. Puce, A., Allison, T., Asgari, M., Gore, J. C. & McCarthy, G. Face-sensitive regions in extrastriate cortex studied by functional MRI. Neurophysiology 74, 1192 –1199 (1996).

    Article  Google Scholar 

  3. Damasio, A. R., Damasio, H. & Van Hoesen, G. W. Prosopagnosia: anatomical basis and behavioral mechanisms. Neurology 32, 331–341 (1982).

    Article  CAS  Google Scholar 

  4. Damasio, A. R., Tranel, D. & Damasio, H. Face agnosia and the neural substrates of memory. Annu. Rev. Neurosci. 13, 89–109 (1990).

    Article  CAS  Google Scholar 

  5. Haxby, J. V. et al. The functional organization of human extrastriate cortex: A PET-RCBF study of selective attention to faces and locations. J. Neurosci. 14, 6336–6353 (1994).

    Article  CAS  Google Scholar 

  6. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  7. Puce, A., Allison, T., Spencer, S. S., Spencer, D. D. & McCarthy, G. Comparisons of cortical activation evoked by faces by intracranial field potentials and functional MRI: two case studies. Hum. Brain Mapp. 5, 298– 305 (1997).

    Article  CAS  Google Scholar 

  8. Puce, A., Allison, T., Gore, J. C., & McCarthy, G. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. Neurophysiology 74, 1192–1199 ( 1995).

    Article  CAS  Google Scholar 

  9. Sergent, J., Otha, S. & MacDonald, B. Functional neuroanatomy of face and object processing. Brain 115, 15–36 (1992).

    Article  Google Scholar 

  10. Yin, R. K. Looking at upside-down faces. J. Exp. Psychol. 81, 141–145 (1969).

    Article  Google Scholar 

  11. Tanaka, J. W. & Farah, M. J. Parts and wholes in face recognition. Q. J. Exp. Psychol. A 46, 225– 245 (1993).

    Article  CAS  Google Scholar 

  12. Tanaka, J. W. & Sengco, J. A. Features and their configuration in face recognition. Mem. Cognit. 25, 583 –592 (1997).

    Article  CAS  Google Scholar 

  13. Diamond, R. & Carey, S. Why faces are and are not special: an effect of expertise. J. Exp. Psychol. Gen. 115, 107–117 (1986).

    Article  CAS  Google Scholar 

  14. Gauthier, I. & Tarr, M. J. Becoming a "greeble" expert: exploring the face recognition mechanisms. Vision Res. 37, 1673–1682 (1997).

    Article  CAS  Google Scholar 

  15. Gauthier, I., Williams, P., Tarr, M. J. & Tanaka, J. W. Training "greeble" experts: a framework for studying expert object recognition processes. Vision Res. 38, 2401– 2428 (1998).

    Article  CAS  Google Scholar 

  16. Bruyer, R. & Crispeels, G. Expertise in person recognition. Bull. Psychonomic Soc. 30, 501– 504 (1992).

    Article  Google Scholar 

  17. Tanaka, J. W. & Taylor, M. Object categories and expertise: is the basic level in the eye of the beholder? Cog. Psychol. 23, 457–482 (1991).

    Article  Google Scholar 

  18. Rhodes, G. & Tremewan, T. Understanding face recognition: caricature effects, inversion, and the homogeneity problem. Visual Cognit. 1, 275–311 ( 1994).

    Article  Google Scholar 

  19. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme, Stutgart, 1988).

    Google Scholar 

  20. Grill-Spector, K., Kushnir, T., Edelman, S., Itzchazk, Y. & Malach, R. Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21, 191 –202 (1998).

    Article  CAS  Google Scholar 

  21. Kanwisher, N., Woods, R. P., Iacoboni, M. & Mazzioat, J. C. A locus in human extrastriate cortex for visual shape analysis. J. Cognit. Neurosci. 9, 133–142 (1997).

    Article  CAS  Google Scholar 

  22. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 18, 8135–8139 (1995).

    Article  Google Scholar 

  23. Cohen, M. S. et al. Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain 8, 89– 100 (1996).

    Article  Google Scholar 

  24. Kanwisher, N., Tong, F. & Nakayama, K. The effects of face inversion on the human fusiform face area. Cognition B68, 1– 11 (1998).

    Article  Google Scholar 

  25. Rhodes, G., Tan, S., Brake, S. & Taylor, K. Expertise and configural coding in face recognition. Br. J. Psychol. 80, 313–331 (1989).

    Article  Google Scholar 

  26. Tranel, D., Damasio, A. R. & Damasio, H. Intact recognition of facial expression, gender and age in patients with impaired recognition of face identity. Neurology 38, 690–696 ( 1988).

    Article  CAS  Google Scholar 

  27. Schweich, M. & Bruyer, R. Heterogeneity in the cognitive manifestations of prosopagnosia: The study of a group of single cases. Cognit. Neuropsychol. 10, 529–547 (1993).

    Article  Google Scholar 

  28. Tovée, M. J. Is face processing special? Neuron 21, 1239 –1242 (1998).

    Article  Google Scholar 

  29. Stern, C.E. et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 8660–8665 (1996).

    Article  CAS  Google Scholar 

  30. Wagner, A. D. et al. Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    Article  CAS  Google Scholar 

  31. Dolan, R. J. How the brain learns to see objects and faces in an impoverished context. Nature 389, 596–599 (1997).

    Article  CAS  Google Scholar 

  32. Schacter, D.L. et al. Brain regions associated with retrieval of structurally coherent visual information. Nature 376, 587– 590 (1995).

    Article  CAS  Google Scholar 

  33. McCarthy, Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the fusiform gyrus. J. Cognit. Neurosci. 9, 605–610 (1997).

    Article  CAS  Google Scholar 

  34. Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P. & Gore, J. C. Levels of categorization in visual object recognition studied with functional MRI. Curr. Biol. 7, 645–651 (1997).

    Article  CAS  Google Scholar 

  35. Gauthier, I., Tarr, M. J., Moylan, J., Anderson, A. W. & Gore, J. C. The functionally defined "face area" is engaged by subordinate-level recognition. Cognit. Neuropsychol. (in press).

Download references

Acknowledgements

We wish to thank René Marois for discussion and Terry Hickey for technical assistance. This work was supported by grants from the National Science Foundation (to M.J.T.) and the National Institute of Neurological Disorder and Stroke (to J.C.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Gauthier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, I., Tarr, M., Anderson, A. et al. Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nat Neurosci 2, 568–573 (1999). https://doi.org/10.1038/9224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing