Abstract
Studying classical wave propagation in periodic high contrast photonic and acoustic media naturally leads to the following spectral problem: −Δu=λεu, where ε(x) (the dielectric constant) is a periodic function that assumes a large value ε near a periodic graph Σ in R 2 and is equal to 1 otherwise. High contrast regimes lead to appearence of pseudo-differential operators of the Dirichlet-to-Neumann type on graphs. The paper contains a technique of approximating these pseudo-differential spectral problems by much simpler differential ones that can sometimes be resolved analytically. Numerical experiments show amazing agreement between the spectra of the pseudo-differential and differential problems.
Similar content being viewed by others
References
S. Alexander, Superconductivity of networks. A percolation approach to the effects of disorder, Phys. Rev. B 27 (1983) 1541-1557.
N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York/London, 1976).
A. Aviram and M. Ratner, eds., Molecular Electronics: Science and Technology, Ann. New York Acad. Sci., Vol. 852 (1998).
Y. Avishai and J.M. Luck, Quantum percolation and ballistic conductance on a lattice of wires, Phys. Rev. B 45(3) (1992) 1074-1095.
J.E. Avron, A. Raveh and B. Zur, Adiabatic quantum transport in multiply connected systems, Rev. Mod. Phys. 60(4) (1988) 873-915.
W. Axmann and P. Kuchment, An efficient finite element method for computing spectra of photonic and acoustic band-gap materials I. Scalar case, J. Comput. Phys. 150 (1999).
W. Axmann, P. Kuchment and L. Kunyansky, Asymptotic methods for thin high contrast 2D PBG materials, J. Lightwave Technology 17(11) (1999) 1996-2007.
M.S. Birman, T.A. Suslina and R.G. Shterenberg, Absolute continuity of the spectrum of a twodimensional Schrödinger operator with potential supported on a periodic system of curves, Preprint ESI No. 934, http://www.esi.ac.at (2000).
L. Borcea, J.G. Berryman and G. Papanicolaou, High-contrast impedance tomography, Inverse Problems 12(6) (1996) 835-858.
C.M. Bowden, J.P. Dowling and H.O. Everitt, eds., Development and applications of materials exhibiting photonic band gaps, J. Optical Soc. Amer. B 10 (1993) 280-413.
R. Carlson, Hill's equation for a homogeneous tree, Electronic J. Diff. Equations, No. 23 (1997) 1-30.
R. Carlson, Adjoint and self-adjoint operators on graphs, Electronic J. Diff. Equations, No. 6 (1998) 1-10.
R. Carlson, Inverse eigenvalue problems on directed graphs, Trans. Amer. Math. Soc. 351(10) (1999) 4069-4088.
R. Carlson, Nonclassical Sturm-Liouville problems and Schrödinger operators on radial trees, Preprint (2000).
J.M. Combes, Spectral problems in the theory of photonic crystals, in: Mathematical Results in Quantum Mechanics (QMath7), Prague, 22-26 June 1998, eds. J. Dittrich et al., Operator Theory, Advances and Applications, Vol. 108 (Birkhäuser, Basel, 1999) pp. 33-46.
S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1995).
P.-G. de Gennes, Champ critique d'une boucle supraconductrice ramefiee, C. R. Acad. Sci. Paris B 292 (1981) 279-282.
D.C. Dobson, An efficient method for band structure calculations in 2D photonic crystals, J. Comput. Phys. 149 (1999) 363-376.
M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations (Scottish Acad. Press, Edinburgh/London, 1973).
W.D. Evans and D.J. Harris, Fractals, trees and the Neumann Laplacian, Math. Ann. 296 (1993) 493-527.
W.D. Evans and Y. Saito, Neumann Laplacians on domains and operators on associated trees, to appear in Quart. J. Math. Oxford.
P. Exner, Lattice Kronig-Penney models, Phys. Rev. Lett. 74 (1995) 3503-3506.
P. Exner, Contact interactions on graph superlattices, J. Phys. A 29 (1996) 87-102.
P. Exner and P. Seba, Electrons in semiconductor microstructures: a challenge to operator theorists, in: Proceedings of the Workshop on Schrödinger Operators, Standard and Nonstandard, Dubna, 1988 (World Scientific, Singapore, 1989) pp. 79-100.
A. Figotin, High-contrast photonic crystals, in: Diffuse Waves in Complex Media, Les Houches, 1998, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 531 (Kluwer Academic, Dordrecht, 1999) pp. 109-136.
A. Figotin and Y. Godin, The computation of spectra of some 2D photonic crystals, J. Comput. Phys. 136 (1997) 585-598.
A. Figotin and P. Kuchment, Band-gap structure of the spectrum of periodic and acoustic media. I. Scalar model, SIAM J. Appl. Math. 56(1) (1996) 68-88.
A. Figotin and P. Kuchment, Band-gap structure of the spectrum of periodic and acoustic media. II. 2D photonic crystals, SIAM J. Appl. Math. 56 (1996) 1561-1620.
A. Figotin and P. Kuchment, 2D photonic crystals with cubic structure: Asymptotic analysis, in: Wave Propagation in Complex Media, ed. G. Papanicolaou, The IMA Volumes in Mathematics and its Applications, Vol. 96 (1997) pp. 23-30.
A. Figotin and P. Kuchment, Spectral properties of classical waves in high contrast periodic media, SIAM J. Appl. Math. 58(2) (1998) 683-702.
A. Figotin and P.Kuchment, Asymptotic models of high contrast periodic photonic and acoustic media (tentative title), parts I and II, in preparation.
M. Freidlin, Markov Processes and Differential Equations: Asymptotic Problems, Lectures in Mathematics, ETH Zürich (Birkhäuser, Basel, 1996).
M. Freidlin and A. Wentzell, Diffusion processes on graphs and the averaging principle, Ann. Probab. 21(4) (1993) 2215-2245.
N. Gerasimenko and B. Pavlov, Scattering problems on non-compact graphs, Theoret. Math. Phys. 75 (1988) 230-240.
C. Giovannella and C.J. Lambert, eds., Lectures on Superconductivity in Networks and Mesoscopic Systems, AIP Conference Proceedings, Vol. 427, Pontignano, Italy, September 1997 (Amer. Inst. of Physics, 1998).
J.S. Griffith, A free-electron theory of conjugated molecules. I. Polycyclic hydrocarbons, Trans. Faraday Soc. 49 (1953) 345-351.
J.S. Griffith, A free-electron theory of conjugated molecules. II. A derived algebraic scheme, Proc. Cambridge Philos. Soc. 49 (1953) 650-658.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, Vol. 24 (Advanced Publishing Program) (Pitman, Boston, MA, 1985).
P.M. Hui and N.F. Johnson, Photonic band-gap materials, in: Solid State Physics, Vol. 49, eds. H. Ehrenreich and F. Spaepen (Academic Press, New York, 1995) pp. 151-203.
Y. Imry, Introduction to Mesoscopic Physics (Mesoscopic Physics and Nanotechnology) (Oxford Univ. Press, Oxford, 1997).
K. Inoue, M. Sasada, J. Kuwamata, K. Sakoda and J.W. Haus, A two-dimensional photonic crystal laser, Japan J. Appl. Phys.
J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
C. Joachim and S. Roth, eds., Atomic and Molecular Wires, NATO Advanced Science Institutes Series E: Applied Sciences, Vol. 341 (Kluwer, Dordrecht, 1997).
J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton Univ. Press, Princeton, NJ, 1995).
S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (1987) 2486.
V.A. Kondrat'ev and O.A. Oleinik, Boundary value problems for partial differential equations in nonsmooth domains (in Russian), Uspekhi Mat. Nauk 382(230) (1983) 3-76.
V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A 32(1999) 595-630.
V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires. II: The inverse problem with possible applications to quantum computers, Preprint (2000).
P. Kuchment, Floquet Theory for Partial Differential Equations (Birkhäuser, Basel, 1993).
P. Kuchment, The mathematics of photonics crystals, in: Mathematical Modeling in Optical Science, chapter 7, eds. G. Bao, L. Cowsar and W. Masters, Frontiers in Applied Mathematics, Vol. 22 (SIAM, Philadelphia, PA, 2001).
P. Kuchment and L. Kunyansky, Spectral properties of high contrast band-gap materials and operators on graphs, Experiment. Math. 8(1) (1999) 1-28.
P. Kuchment and H. Zeng, Convergence of spectra of mesoscopic systems collapsing onto a graph, J. Math. Anal. Appl. 258 (2001) 671-700.
G. Kurizki and J. W. Haus, eds., Photonic Band Structures, J. Modern Optics 41(2) (1994), a special issue.
S. Novikov, Schrödinger operators on graphs and topology, Russian Math. Surveys 52(6) (1997) 177-178.
S. Novikov, Discrete Schrödinger operators and topology, Asian Math. J. 2(4) (1999) 841-853.
S. Novikov, Schrödinger operators on graphs and symplectic geometry, in: The Arnoldfest, Toronto, ON, 1997, Fields Institute Communications 24 (Amer. Math. Soc., Providence, RI, 1999) pp. 397-413.
Photonic & Acoustic Band-Gap Bibliography, http://www.ee.ucla.edu/labs/photon/ biblio.html.
J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications, Proceedings of the NATO Advanced Study Institute: Quantum Optics in Wavelength-Scale Structures, Cargese, Corsica, 26 August-2 September 1995, NATO Advanced Science Institutes Series (Kluwer Academic, Dordrecht, 1996).
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators, (Academic Press, New York, 1978).
J. Rubinstein and M. Schatzman, Spectral and variational problems on multiconnected strips, C. R. Acad. Sci. Paris Ser. I Math. 325(4) (1997) 377-382.
J. Rubinstein and M. Schatzman, Asymptotics for thin superconducting rings, J. Math. Pures Appl. (9) 77(8) (1998) 801-820.
J. Rubinstein and M. Schatzman, On multiply connected mesoscopic superconducting structures, Sémin. Théor. Spectr. Géom., No. 15, Université Grenoble I, Saint-Martin-d'Hères (1998) 207-220.
J. Rubinstein and M. Schatzman, Variational problems on multiply connected thin strips I: Basic estimates and convergence of the Laplacian spectrum, Preprint (1999).
K. Ruedenberg and C.W. Scherr, Free-electron network model for conjugated systems. I. Theory, J. Chem. Phys. 21(9) (1953) 1565-1581.
Y. Saito, The limiting equation of the Neumann Laplacians on shrinking domains, Preprint (1999).
M. Schatzman, On the eigenvalues of the Laplace operator on a thin set with Neumann boundary conditions, Appl. Anal. 61 (1996) 293-306.
M. Scheffler and R. Zimmermann, eds., The Physics of Semiconductors, Proceedings of 23rd Internat. Conf., Vol. 2, Berlin, 21-26 July 1996 (World Scientific, Singapore, 1996).
P.A. Serena and N. Garcia, eds., Nanowires, NATO Advanced Science Institutes Series E: Applied Sciences, Vol. 340 (Kluwer, Dordrecht, 1997).
C.M. Soukoulis, ed., Photonic Band Gap Materials, Proceedings of the NATO Advanced Science Institutes on Photonic Band GapMaterials, Elounda, Crete, Greece, 18-30 June 1995, NATO Advanced Science Institutes Series (Kluwer Academic, Dordrecht, 1996).
P.R. Villaneuve and M. Piché, Photonic band gaps in periodic dielectric structures, Progress Quant. Electr. 18 (1994) 153-200.
E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 (1987) 2059.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kuchment, P., Kunyansky, L. Differential Operators on Graphs and Photonic Crystals. Advances in Computational Mathematics 16, 263–290 (2002). https://doi.org/10.1023/A:1014481629504
Issue Date:
DOI: https://doi.org/10.1023/A:1014481629504