[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Differential Operators on Graphs and Photonic Crystals

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Studying classical wave propagation in periodic high contrast photonic and acoustic media naturally leads to the following spectral problem: −Δu=λεu, where ε(x) (the dielectric constant) is a periodic function that assumes a large value ε near a periodic graph Σ in R 2 and is equal to 1 otherwise. High contrast regimes lead to appearence of pseudo-differential operators of the Dirichlet-to-Neumann type on graphs. The paper contains a technique of approximating these pseudo-differential spectral problems by much simpler differential ones that can sometimes be resolved analytically. Numerical experiments show amazing agreement between the spectra of the pseudo-differential and differential problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alexander, Superconductivity of networks. A percolation approach to the effects of disorder, Phys. Rev. B 27 (1983) 1541-1557.

    Google Scholar 

  2. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York/London, 1976).

    Google Scholar 

  3. A. Aviram and M. Ratner, eds., Molecular Electronics: Science and Technology, Ann. New York Acad. Sci., Vol. 852 (1998).

  4. Y. Avishai and J.M. Luck, Quantum percolation and ballistic conductance on a lattice of wires, Phys. Rev. B 45(3) (1992) 1074-1095.

    Google Scholar 

  5. J.E. Avron, A. Raveh and B. Zur, Adiabatic quantum transport in multiply connected systems, Rev. Mod. Phys. 60(4) (1988) 873-915.

    Google Scholar 

  6. W. Axmann and P. Kuchment, An efficient finite element method for computing spectra of photonic and acoustic band-gap materials I. Scalar case, J. Comput. Phys. 150 (1999).

  7. W. Axmann, P. Kuchment and L. Kunyansky, Asymptotic methods for thin high contrast 2D PBG materials, J. Lightwave Technology 17(11) (1999) 1996-2007.

    Google Scholar 

  8. M.S. Birman, T.A. Suslina and R.G. Shterenberg, Absolute continuity of the spectrum of a twodimensional Schrödinger operator with potential supported on a periodic system of curves, Preprint ESI No. 934, http://www.esi.ac.at (2000).

  9. L. Borcea, J.G. Berryman and G. Papanicolaou, High-contrast impedance tomography, Inverse Problems 12(6) (1996) 835-858.

    Google Scholar 

  10. C.M. Bowden, J.P. Dowling and H.O. Everitt, eds., Development and applications of materials exhibiting photonic band gaps, J. Optical Soc. Amer. B 10 (1993) 280-413.

  11. R. Carlson, Hill's equation for a homogeneous tree, Electronic J. Diff. Equations, No. 23 (1997) 1-30.

    Google Scholar 

  12. R. Carlson, Adjoint and self-adjoint operators on graphs, Electronic J. Diff. Equations, No. 6 (1998) 1-10.

    Google Scholar 

  13. R. Carlson, Inverse eigenvalue problems on directed graphs, Trans. Amer. Math. Soc. 351(10) (1999) 4069-4088.

    Google Scholar 

  14. R. Carlson, Nonclassical Sturm-Liouville problems and Schrödinger operators on radial trees, Preprint (2000).

  15. J.M. Combes, Spectral problems in the theory of photonic crystals, in: Mathematical Results in Quantum Mechanics (QMath7), Prague, 22-26 June 1998, eds. J. Dittrich et al., Operator Theory, Advances and Applications, Vol. 108 (Birkhäuser, Basel, 1999) pp. 33-46.

    Google Scholar 

  16. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  17. P.-G. de Gennes, Champ critique d'une boucle supraconductrice ramefiee, C. R. Acad. Sci. Paris B 292 (1981) 279-282.

    Google Scholar 

  18. D.C. Dobson, An efficient method for band structure calculations in 2D photonic crystals, J. Comput. Phys. 149 (1999) 363-376.

    Google Scholar 

  19. M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations (Scottish Acad. Press, Edinburgh/London, 1973).

    Google Scholar 

  20. W.D. Evans and D.J. Harris, Fractals, trees and the Neumann Laplacian, Math. Ann. 296 (1993) 493-527.

    Google Scholar 

  21. W.D. Evans and Y. Saito, Neumann Laplacians on domains and operators on associated trees, to appear in Quart. J. Math. Oxford.

  22. P. Exner, Lattice Kronig-Penney models, Phys. Rev. Lett. 74 (1995) 3503-3506.

    Google Scholar 

  23. P. Exner, Contact interactions on graph superlattices, J. Phys. A 29 (1996) 87-102.

    Google Scholar 

  24. P. Exner and P. Seba, Electrons in semiconductor microstructures: a challenge to operator theorists, in: Proceedings of the Workshop on Schrödinger Operators, Standard and Nonstandard, Dubna, 1988 (World Scientific, Singapore, 1989) pp. 79-100.

    Google Scholar 

  25. A. Figotin, High-contrast photonic crystals, in: Diffuse Waves in Complex Media, Les Houches, 1998, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 531 (Kluwer Academic, Dordrecht, 1999) pp. 109-136.

    Google Scholar 

  26. A. Figotin and Y. Godin, The computation of spectra of some 2D photonic crystals, J. Comput. Phys. 136 (1997) 585-598.

    Google Scholar 

  27. A. Figotin and P. Kuchment, Band-gap structure of the spectrum of periodic and acoustic media. I. Scalar model, SIAM J. Appl. Math. 56(1) (1996) 68-88.

    Google Scholar 

  28. A. Figotin and P. Kuchment, Band-gap structure of the spectrum of periodic and acoustic media. II. 2D photonic crystals, SIAM J. Appl. Math. 56 (1996) 1561-1620.

    Google Scholar 

  29. A. Figotin and P. Kuchment, 2D photonic crystals with cubic structure: Asymptotic analysis, in: Wave Propagation in Complex Media, ed. G. Papanicolaou, The IMA Volumes in Mathematics and its Applications, Vol. 96 (1997) pp. 23-30.

  30. A. Figotin and P. Kuchment, Spectral properties of classical waves in high contrast periodic media, SIAM J. Appl. Math. 58(2) (1998) 683-702.

    Google Scholar 

  31. A. Figotin and P.Kuchment, Asymptotic models of high contrast periodic photonic and acoustic media (tentative title), parts I and II, in preparation.

  32. M. Freidlin, Markov Processes and Differential Equations: Asymptotic Problems, Lectures in Mathematics, ETH Zürich (Birkhäuser, Basel, 1996).

    Google Scholar 

  33. M. Freidlin and A. Wentzell, Diffusion processes on graphs and the averaging principle, Ann. Probab. 21(4) (1993) 2215-2245.

    Google Scholar 

  34. N. Gerasimenko and B. Pavlov, Scattering problems on non-compact graphs, Theoret. Math. Phys. 75 (1988) 230-240.

    Google Scholar 

  35. C. Giovannella and C.J. Lambert, eds., Lectures on Superconductivity in Networks and Mesoscopic Systems, AIP Conference Proceedings, Vol. 427, Pontignano, Italy, September 1997 (Amer. Inst. of Physics, 1998).

  36. J.S. Griffith, A free-electron theory of conjugated molecules. I. Polycyclic hydrocarbons, Trans. Faraday Soc. 49 (1953) 345-351.

    Google Scholar 

  37. J.S. Griffith, A free-electron theory of conjugated molecules. II. A derived algebraic scheme, Proc. Cambridge Philos. Soc. 49 (1953) 650-658.

    Google Scholar 

  38. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, Vol. 24 (Advanced Publishing Program) (Pitman, Boston, MA, 1985).

    Google Scholar 

  39. P.M. Hui and N.F. Johnson, Photonic band-gap materials, in: Solid State Physics, Vol. 49, eds. H. Ehrenreich and F. Spaepen (Academic Press, New York, 1995) pp. 151-203.

    Google Scholar 

  40. Y. Imry, Introduction to Mesoscopic Physics (Mesoscopic Physics and Nanotechnology) (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  41. K. Inoue, M. Sasada, J. Kuwamata, K. Sakoda and J.W. Haus, A two-dimensional photonic crystal laser, Japan J. Appl. Phys.

  42. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

    Google Scholar 

  43. C. Joachim and S. Roth, eds., Atomic and Molecular Wires, NATO Advanced Science Institutes Series E: Applied Sciences, Vol. 341 (Kluwer, Dordrecht, 1997).

  44. J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton Univ. Press, Princeton, NJ, 1995).

    Google Scholar 

  45. S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (1987) 2486.

    Google Scholar 

  46. V.A. Kondrat'ev and O.A. Oleinik, Boundary value problems for partial differential equations in nonsmooth domains (in Russian), Uspekhi Mat. Nauk 382(230) (1983) 3-76.

    Google Scholar 

  47. V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A 32(1999) 595-630.

    Google Scholar 

  48. V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires. II: The inverse problem with possible applications to quantum computers, Preprint (2000).

  49. P. Kuchment, Floquet Theory for Partial Differential Equations (Birkhäuser, Basel, 1993).

    Google Scholar 

  50. P. Kuchment, The mathematics of photonics crystals, in: Mathematical Modeling in Optical Science, chapter 7, eds. G. Bao, L. Cowsar and W. Masters, Frontiers in Applied Mathematics, Vol. 22 (SIAM, Philadelphia, PA, 2001).

    Google Scholar 

  51. P. Kuchment and L. Kunyansky, Spectral properties of high contrast band-gap materials and operators on graphs, Experiment. Math. 8(1) (1999) 1-28.

    Google Scholar 

  52. P. Kuchment and H. Zeng, Convergence of spectra of mesoscopic systems collapsing onto a graph, J. Math. Anal. Appl. 258 (2001) 671-700.

    Google Scholar 

  53. G. Kurizki and J. W. Haus, eds., Photonic Band Structures, J. Modern Optics 41(2) (1994), a special issue.

  54. S. Novikov, Schrödinger operators on graphs and topology, Russian Math. Surveys 52(6) (1997) 177-178.

    Google Scholar 

  55. S. Novikov, Discrete Schrödinger operators and topology, Asian Math. J. 2(4) (1999) 841-853.

    Google Scholar 

  56. S. Novikov, Schrödinger operators on graphs and symplectic geometry, in: The Arnoldfest, Toronto, ON, 1997, Fields Institute Communications 24 (Amer. Math. Soc., Providence, RI, 1999) pp. 397-413.

    Google Scholar 

  57. Photonic & Acoustic Band-Gap Bibliography, http://www.ee.ucla.edu/labs/photon/ biblio.html.

  58. J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications, Proceedings of the NATO Advanced Study Institute: Quantum Optics in Wavelength-Scale Structures, Cargese, Corsica, 26 August-2 September 1995, NATO Advanced Science Institutes Series (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  59. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators, (Academic Press, New York, 1978).

    Google Scholar 

  60. J. Rubinstein and M. Schatzman, Spectral and variational problems on multiconnected strips, C. R. Acad. Sci. Paris Ser. I Math. 325(4) (1997) 377-382.

    Google Scholar 

  61. J. Rubinstein and M. Schatzman, Asymptotics for thin superconducting rings, J. Math. Pures Appl. (9) 77(8) (1998) 801-820.

    Google Scholar 

  62. J. Rubinstein and M. Schatzman, On multiply connected mesoscopic superconducting structures, Sémin. Théor. Spectr. Géom., No. 15, Université Grenoble I, Saint-Martin-d'Hères (1998) 207-220.

    Google Scholar 

  63. J. Rubinstein and M. Schatzman, Variational problems on multiply connected thin strips I: Basic estimates and convergence of the Laplacian spectrum, Preprint (1999).

  64. K. Ruedenberg and C.W. Scherr, Free-electron network model for conjugated systems. I. Theory, J. Chem. Phys. 21(9) (1953) 1565-1581.

    Google Scholar 

  65. Y. Saito, The limiting equation of the Neumann Laplacians on shrinking domains, Preprint (1999).

  66. M. Schatzman, On the eigenvalues of the Laplace operator on a thin set with Neumann boundary conditions, Appl. Anal. 61 (1996) 293-306.

    Google Scholar 

  67. M. Scheffler and R. Zimmermann, eds., The Physics of Semiconductors, Proceedings of 23rd Internat. Conf., Vol. 2, Berlin, 21-26 July 1996 (World Scientific, Singapore, 1996).

    Google Scholar 

  68. P.A. Serena and N. Garcia, eds., Nanowires, NATO Advanced Science Institutes Series E: Applied Sciences, Vol. 340 (Kluwer, Dordrecht, 1997).

    Google Scholar 

  69. C.M. Soukoulis, ed., Photonic Band Gap Materials, Proceedings of the NATO Advanced Science Institutes on Photonic Band GapMaterials, Elounda, Crete, Greece, 18-30 June 1995, NATO Advanced Science Institutes Series (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  70. P.R. Villaneuve and M. Piché, Photonic band gaps in periodic dielectric structures, Progress Quant. Electr. 18 (1994) 153-200.

    Google Scholar 

  71. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 (1987) 2059.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchment, P., Kunyansky, L. Differential Operators on Graphs and Photonic Crystals. Advances in Computational Mathematics 16, 263–290 (2002). https://doi.org/10.1023/A:1014481629504

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014481629504