[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Changes in Proteomic Features Induced by Insulin on Vascular Smooth Muscle Cells from Spontaneous Hypertensive Rats In Vitro

  • Original Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Hyperinsulinemia is a risk factor in atherosclerosis formation that it stimulated vascular smooth muscle cells (VSMCs) proliferation and migration. To understand the underlying molecular mechanism involved in the processes of cellular response to insulin, VSMCs from Wistar-Kyoto rat (WKY) and spontaneous hypertensive rat (SHR) were isolated and cultured, and its proteome was comparatively analyzed with normal control by two-dimensional gel electrophoresis (2-DE). Results showed that the proliferation of VSMCs from SHR be more sensitive to insulin stimulation than that VSMCs from WKY. The detectable spots ranged from 537 to 608 on the gels in VSMCs of SHR, and 413 ± 31 spots in VSMCs of WKY. The different expressed protein spots in VSMCs of SHR were then isolated and measured by matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). A total of 18 spots showed a sharp clear spectrum, and 13 spots matched with the known proteins from database. These proteins were mainly involved in cytoskeleton, glycometabolism, and post-translational processes. Among these proteins, OPN and matrix gla protein were up-regulated expression proteins, while α-SM actin was down-regulated. Furthermore, these preliminarily identified proteins confirmed by RT-PCR and western blotting analysis were coincident with the changes in 2-DE check. In addition, the cytoskeleton changes and migration rate of VSMCs from SHR treated by insulin increased significantly. The results showed that insulin plays a crucial role in activating proliferation and migration of VSMCs, by regulating the phenotype switch of VSMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VSMC:

Vascular smooth muscle cells

2-DE:

Two-dimensional gel electrophoresis

MALDI-TOF-MS:

Matrix-assisted desorption/ionization time of flight mass spectrometry

SHR:

Spontaneous hypertensive rat

WKY:

Wistar-Kyoto rat

α-SM actin:

α-Smooth muscle actin

OPN:

Osteopontin

References

  1. Yamada, H., Tsushima, T., Murakami, H., Uchigata, Y., & Iwamoto, Y. (2002). Potentiation of mitogenic activity of platelet-derived growth factor by physiological concentrations of insulin via the MAP kinase cascade in rat A10 vascular smooth muscle cells. International Journal of Experimental Diabetes Research, 3, 131–144.

    Article  PubMed  Google Scholar 

  2. Doronzo, G., Russo, I., Mattiello, L., Anfossi, G., Bosia, A., & Trovati, M. (2004). Insulin activates vascular endothelial growth factor in vascular smooth muscle cells: Influence of nitric oxide and of insulin resistance. European Journal of Clinical Investigation, 34, 664–673.

    Article  CAS  PubMed  Google Scholar 

  3. Sourij, H., Schmoelzer, I., Dittrich, P., Paulweber, B., Iglseder, B., & Wascher, T. C. (2008). Insulin resistance as a risk factor for carotid atherosclerosis: A comparison of the homeostasis model assessment and the short insulin tolerance test. Stroke, 39, 1349–1351.

    Article  CAS  PubMed  Google Scholar 

  4. Pyörälä, M., Miettinen, H., Halonen, P., Laakso, M., & Pyörälä, K. (2000). Insulin resistance syndrome predicts the risk of coronary heart disease and stroke in healthy middle-aged men: The 22-year follow-up results of the Helsinki policemen study. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 538–544.

    PubMed  Google Scholar 

  5. Doronzo, G., Russo, I., Mattiello, L., Riganti, C., Anfossi, G., & Trovati, M. (2006). Insulin activates hypoxia-inducible factor-1 alpha in human and rat vascular smooth muscle cells via phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways: Impairment in insulin resistance owing to defects in insulin signaling. Diabetologia, 49, 1049–1063.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, C. C., Gurevich, I., & Draznin, B. (2003). Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes, 52, 2562–2569.

    Article  CAS  PubMed  Google Scholar 

  7. Deng, D. X., Spin, J. M., Tsalenko, A., Vailaya, A., Ben-Dor, A., Yakhini, Z., et al. (2006). Molecular signatures determining coronary artery and saphenous vein smooth muscle cell phenotypes: Distinct responses to stimuli. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1058–1065.

    Article  CAS  PubMed  Google Scholar 

  8. Rzucidlo, E. M., Martin, K. A., & Powell, R. J. (2007). Regulation of vascular smooth muscle cell differentiation. Journal of Vascular Surgery, 45(Suppl A), 25A–32A.

    Article  Google Scholar 

  9. Pandolfi, A., Grilli, A., Cilli, C., Patruno, A., Giaccari, A., Di Silvestre, S., et al. (2003). Phenotype modulation in cultures of vascular smooth muscle cells from diabetic rats: Association with increased nitric oxide synthase expression and superoxide anion generation. Journal of Cellular Physiology, 196, 378–385.

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi, K., Shibata, K., Morita, T., Iwasaki, K., Watanabe, M., & Sobue, K. (2004). Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. The Journal of Biological Chemistry, 279, 40807–40818.

    Article  CAS  PubMed  Google Scholar 

  11. Muñoz, F. J., Jiménez, M., Melón, J., & Ruiz-Torres, A. (1998). Phenotypic changes in vascular smooth muscle cells during aging: Insulin effect on migration. Gerontology, 44, 149–152.

    Article  PubMed  Google Scholar 

  12. Faries, P. L., Rohan, D. I., Wyers, M. C., Marin, M. L., Hollier, L. H., Quist, W. C., et al. (2002). Vascular smooth muscle cells derived from atherosclerotic human arteries exhibit greater adhesion, migration, and proliferation than venous cells. Journal of Surgical Research, 104, 22–28.

    Article  PubMed  Google Scholar 

  13. Yasunari, K., Kohno, M., Kano, H., Yokokawa, K., Minami, M., & Yoshikawa, J. (1999). Antioxidants improve impaired insulin-mediated glucose uptake and prevent migration and proliferation of cultured rabbit coronary smooth muscle cells induced by high glucose. Circulation, 99, 1370–1378.

    CAS  PubMed  Google Scholar 

  14. Arnqvist, H. J., Bornfeldt, K. E., Chen, Y., & Lindström, T. (1995). The insulin-like growth factor system in vascular smooth muscle: Interaction with insulin and growth factors. Metabolism, 44, 58–66.

    Article  CAS  PubMed  Google Scholar 

  15. Okuda, T., Sumiya, T., Mizutani, K., Tago, N., Miyata, T., Tanabe, T., et al. (2002). Analyses of differential gene expression in genetic hypertensive rats by microarray. Hypertension Research, 25, 249–255.

    Article  CAS  PubMed  Google Scholar 

  16. Boccardi, C., Cecchettini, A., Caselli, A., Camici, G., Evangelista, M., Mercatanti, A., et al. (2007). A proteomic approach to the investigation of early events involved in the activation of vascular smooth muscle cells. Cell and Tissue Research, 329, 119–128.

    Article  CAS  PubMed  Google Scholar 

  17. Fukuda, N., Hu, W. Y., Satoh, C., Nakayama, M., Kishioka, H., Kubo, A., et al. (1999). Contribution of synthetic phenotype on the enhanced angiotensin II-generating system in vascular smooth muscle cells from spontaneously hypertensive rats. Journal of Hypertension, 17, 1099–1107.

    Article  CAS  PubMed  Google Scholar 

  18. King, K. E., Iyemere, V. P., Weissberg, P. L., & Shanahan, C. M. (2003). Krüppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. The Journal of Biological Chemistry, 278, 11661–11669.

    Article  CAS  PubMed  Google Scholar 

  19. Ross, R. (1971). The smooth muscle cell: II Growth of smooth muscle in culture and formation of elastic fibers. Journal of Cell Biology, 50, 172–186.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, S., Zhang, Y., Xie, X., Hu, W., Cai, R., Kang, J., et al. (2007). Application of two-dimensional electrophoresis in the research of retinal proteins of diabetic rat. Cellular and Molecular Immunology, 4, 65–70.

    CAS  PubMed  Google Scholar 

  21. Shanahan, C. M., Cary, N. R., Osbourn, J. K., & Weissberg, P. L. (1997). Identification of osteoglycin as a component of the vascular matrix differential expression by vascular smooth muscle cells during neointima formation and in atherosclerotic plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 2437–2447.

    CAS  PubMed  Google Scholar 

  22. Hu, W. Y., Fukuda, N., Ikeda, Y., Suzuki, R., Tahira, Y., Takagi, H., et al. (2003). Human-derived vascular smooth muscle cells produce angiotensin II by changing to the synthetic phenotype. Journal of Cellular Physiology, 196, 284–292.

    Article  CAS  PubMed  Google Scholar 

  23. Hao, H., Ropraz, P., Verin, V., Camenzind, E., Geinoz, A., Pepper, M. S., et al. (2002). Heterogeneity of smooth muscle cell populations cultured from pig coronary artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1093–1099.

    Article  CAS  PubMed  Google Scholar 

  24. Chadjichristos, C. E., Morel, S., Derouette, J. P., Sutter, E., Roth, I., Brisset, A. C., et al. (2008). Targeting connexin 43 prevents platelet-derived growth factor-BB-induced phenotypic change in porcine coronary artery smooth muscle cells. Circulation Research, 102, 653–660.

    Article  CAS  PubMed  Google Scholar 

  25. Lin, Z. H., Fukuda, N., Jin, X. Q., Yao, E. H., Ueno, T., Endo, M., et al. (2004). Complement 3 is involved in the synthetic phenotype and exaggerated growth of vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension, 44, 42–47.

    Article  CAS  PubMed  Google Scholar 

  26. Begum, N., & Ragolia, L. (2000). High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. American Journal of Physiology. Cell Physiology, 278, C81–C91.

    CAS  PubMed  Google Scholar 

  27. Opitz, F., Schenke-Layland, K., Cohnert, T. U., & Stock, U. A. (2007). Phenotypical plasticity of vascular smooth muscle cells-effect of in vitro and in vivo shear stress for tissue engineering of blood vessels. Tissue Engineering, 13, 2505–2514.

    Article  CAS  PubMed  Google Scholar 

  28. Duan, C. (2003). The chemotactic and mitogenic responses of vascular smooth muscle cells to insulin-like growth factor-I require the activation of ERK1/2. Molecular and Cellular Endocrinology, 206, 75–83.

    Article  CAS  PubMed  Google Scholar 

  29. Meng, D., Lv, D. D., & Fang, J. (2008). Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Rac1 in vascular smooth muscle cells. Cardiovascular Research, 80, 299–308.

    Article  CAS  PubMed  Google Scholar 

  30. Radhakrishnan, Y., Maile, L. A., Ling, Y., Graves, L. M., & Clemmons, D. R. (2008). Insulin-like growth factor-I stimulates Shc-dependent phosphatidylinositol 3-kinase activation via Grb2-associated p85 in vascular smooth muscle cells. The Journal of Biological Chemistry, 283, 16320–16331.

    Article  CAS  PubMed  Google Scholar 

  31. Lim, H. J., Park, H. Y., Ko, Y. G., Lee, S. H., Cho, S. Y., Lee, E. J., et al. (2004). Dominant negative insulin-like growth factor-1 receptor inhibits neointimal formation through suppression of vascular smooth muscle cell migration and proliferation, and induction of apoptosis. Biochemical and Biophysical Research Communications, 325, 1106–1114.

    Article  CAS  PubMed  Google Scholar 

  32. Shanahan, C. M., Weissberg, P. L., & Metcalfe, J. C. (1993). Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells. Circulation Research, 73, 193–204.

    CAS  PubMed  Google Scholar 

  33. Kaartinen, M. T., Murshed, M., Karsenty, G., & McKee, M. D. (2007). Osteopontin upregulation and polymerization by transglutaminase 2 in calcified arteries of Matrix Gla protein-deficient mice. Journal of Histochemistry and Cytochemistry, 55, 375–386.

    Article  CAS  PubMed  Google Scholar 

  34. Steitz, S. A., Speer, M. Y., Curinga, G., Yang, H. Y., Haynes, P., Aebersold, R., et al. (2001). Smooth muscle cell phenotypic transition associated with calcification: Upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circulation Research, 89, 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  35. Abe, K., Nakashima, H., Ishida, M., Miho, N., Sawano, M., Soe, N. N., et al. (2008). Angiotensin II-induced osteopontin expression in vascular smooth muscle cells involves Gq/11, Ras, ERK, Src and Ets-1. Hypertension Research, 31, 987–998.

    Article  CAS  PubMed  Google Scholar 

  36. Boccardi, C., Cecchettini, A., Caselli, A., Camici, G., Evangelista, M., Mercatanti, A., et al. (2007). A proteomic approach to the investigation of early events involved in vascular smooth muscle cell activation. Cell and Tissue Research, 328, 185–195.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by two grants from the National Science Foundation of China (No. 30570764 and No 30772281). The authors thank Wei Sun (Central Lab of Third Military Medical University, Chongqing, China) for technical support on confocal images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xukai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhang, B., Bai, Y. et al. Changes in Proteomic Features Induced by Insulin on Vascular Smooth Muscle Cells from Spontaneous Hypertensive Rats In Vitro. Cell Biochem Biophys 58, 97–106 (2010). https://doi.org/10.1007/s12013-010-9096-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9096-x

Keywords

Navigation