[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Harnessing the rhizosphere microbiome through plant breeding and agricultural management

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

The need to enhance the sustainability of intensive agricultural systems is widely recognized One promising approach is to encourage beneficial services provided by soil microorganisms to decrease the inputs of fertilizers and pesticides. However, limited success of this approach in field applications raises questions as to how this might be best accomplished.

Scope

We highlight connections between root exudates and the rhizosphere microbiome, and discuss the possibility of using plant exudation characteristics to selectively enhance beneficial microbial activities and microbiome characteristics. Gaps in our understanding and areas of research that are vital to our ability to more fully exploit the soil microbiome for agroecosystem productivity and sustainability are also discussed.

Conclusion

This article outlines strategies for more effectively exploiting beneficial microbial services on agricultural systems, and cals attention to topics that require additional research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    PubMed  CAS  Google Scholar 

  • Ayres E, Steltzer H, Berg S, Wall DH (2009) Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–912

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    PubMed  CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M, Santelia D et al (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Phys 146:762–771

    CAS  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A et al (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Phys 151:2006–2017

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    PubMed  CAS  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    PubMed  CAS  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S et al (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239–1247

    CAS  Google Scholar 

  • Bonanomi G, Rietkerk M, Dekker SC, Mazzoleni S (2007) Islands of fertility induce co-occurring negative and positive plant-soil feedbacks promoting coexistence. Plant Ecol 197:207–218

    Google Scholar 

  • Brandt BW, Kelpin FDL, van Leeuwen IMM, Kooijman SALM (2004) Modelling microbial adaptation to changing availability of substrates. Water Res 38:1003–1013

    PubMed  CAS  Google Scholar 

  • Bremer C, Braker G, Matthies D, Beierkuhnlein C, Conrad R (2009) Plant presence and species combination, but not diversity, influence denitrifier activity and the composition of nirK-type denitrifier communities in grassland soil. FEMS Microbiol Ecol 70:377–387

    PubMed  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    PubMed  CAS  Google Scholar 

  • Broz AK, Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa. ISME J 1:763–765

    PubMed  CAS  Google Scholar 

  • Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337

    Google Scholar 

  • Buchanan RL, Bagi LK (1999) Microbial competition: effect of Pseudomonas fluorescens on the growth of Listeria monocytogenes. Food Microbiol 16:523–529

    Google Scholar 

  • Cairney JWG (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil 344:51–71

    CAS  Google Scholar 

  • Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733

    PubMed  CAS  Google Scholar 

  • Carney KM, Matson PA (2006) The influence of tropical plant diversity and composition on soil microbial communities. Microb Ecol 52:226–238

    PubMed  Google Scholar 

  • Chiang PN, Chiu C-Y, Wang MK, Chen B-T (2011) Low-molecular-weight organic acids exuded by millet (Setaria italica (L.) Beauv.) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176:33–38

    CAS  Google Scholar 

  • Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–112

    PubMed  CAS  Google Scholar 

  • Delalande L, Faure D, Raffoux A, Uroz S, D’Angelo-Picard C, Elasri M et al (2005) N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol Ecol 52:13–20

    PubMed  CAS  Google Scholar 

  • Elliot LF, Lynch JM (1994) Biodiversity and soil resilience. In: Greenland DJ, Szabolc I (eds) Soil resilience and sustainable land use. CAB International pp 353–364

  • Erlich Y, Chang K, Gordon A, Ronen R, Navon O, Rooks M et al (2009) DNA sudoku - Harnessing high-throughput sequencing for multiplexed specimen analysis. Genome Res 19:1243–1253

    PubMed  CAS  Google Scholar 

  • Fliessbach A, Winkler M, Lutz MP, Oberholzer H-R, Mäder P (2009) Soil amendment with Pseudomonas fluorescens CHA0: Lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623

    PubMed  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Google Scholar 

  • Fussmann GF, Heber G (2002) Food web complexity and chaotic population dynamics. Ecol Lett 5:394–401

    Google Scholar 

  • Gao MS, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834

    PubMed  CAS  Google Scholar 

  • Gaur R, Khare SK (2011) Solvent tolerant Pseudomonads as a source of novel lipases for applications in non-aqueous systems. Biocat Biotransform 29:161–171

    CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    PubMed  CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agr Ecosyst Environ 113:17–35

    Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    CAS  Google Scholar 

  • Grunsven RHA, Putten WH, Bezemer TM, Veenendaal EM (2009) Plant–soil feedback of native and range-expanding plant species is insensitive to temperature. Oecologia 162:1059–1069

    PubMed  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518

    Google Scholar 

  • Högberg MN, Högberg P, Myrold DD (2006) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601

    PubMed  Google Scholar 

  • Hwang SF, Ahmed HU, Gossen BD, Kutcher HR, Brandt SA, Strelkov SE et al (2009) Effect of crop rotation on the soil pathogen population dynamics and canola seedling establishment. Plant Pathol J 8:106–112

    Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Micro Int 16:851–858

    CAS  Google Scholar 

  • Jain A, Singh S, Sarma BK, Singh HB (2011) Microbial consortium mediated reprogramming of defense network in pea to enhance tolerance against Sclerotinia sclerotiorum. J App Microbiol 112:537–550

    Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    PubMed  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  Google Scholar 

  • Jousset A, Rochat L, Lanoue A, Bonkowski M, Keel C, Scheu S (2011) Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Mol Plant Microbe Interact 24:352–358

    PubMed  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    PubMed  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    PubMed  CAS  Google Scholar 

  • Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J et al (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2:286–293

    Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Ant van Leeuw Int J Gen Mol Microbiol 81:509–520

    Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    PubMed  CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    CAS  Google Scholar 

  • Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM (2006) Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. FEMS Microbiol Ecol 55:351–68

    PubMed  CAS  Google Scholar 

  • Larkin RP, Honeycutt CW (2006) Effects of different 3-year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology 96:68–79

    PubMed  Google Scholar 

  • Larsen EH, Lobinski R, Burger-Meÿer K, Hansen M, Ruzik R, Mazurowska L et al (2006) Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal Bioanal Chem 385:1098–1108

    PubMed  CAS  Google Scholar 

  • Lesuffleur F, Paynel F, Bataillé MP, Deunff E, Cliquet JB (2007) Root amino acid exudation: measurement of high efflux rates of glycine and serine from six different plant species. Plant Soil 294:235–246

    CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    PubMed  CAS  Google Scholar 

  • Lu Y, Abraham WR, Conrad R (2007) Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ Microbiol 9:474–481

    PubMed  CAS  Google Scholar 

  • Madritch MD, Lindroth RL (2011) Soil microbial communities adapt to genetic variation in leaf litter inputs. Oikos 120:1696–1704

    Google Scholar 

  • Mahmood S, Paton GI, Prosser JI (2005) Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol 7:1349–1360

    PubMed  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Anolles G, Rolfe BG et al (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. PNAS 100:1444–1449

    PubMed  CAS  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    PubMed  CAS  Google Scholar 

  • Meng Q, Yin J, Rosenzweig N, Douches D, Hao JJ (2012) Culture-based assessment of microbial communities in soil suppressive to potato common scab. Plant Dis 96:712–717

    Google Scholar 

  • Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742

    PubMed  CAS  Google Scholar 

  • Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can “omic” analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16

    PubMed  CAS  Google Scholar 

  • Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C et al (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170:165–175

    PubMed  CAS  Google Scholar 

  • Naeem S, Knops J, Tilman D, Howe K, Kennedy T, Gale S (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108

    Google Scholar 

  • Ochiai N, Powelson ML, Crowe FJ, Dick RP (2008) Green manure effects on soil quality in relation to suppression of Verticillium wilt of potatoes. Biol Fertil Soil 44:1013–1023

    Google Scholar 

  • Oger P, Mansouri H, Nesme X, Dessaux Y (2004) Engineering root exudation of lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb Ecol 47:96–103

    PubMed  CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    PubMed  CAS  Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–593

    PubMed  Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2006) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Näsholm T et al (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5:e11915

    PubMed  Google Scholar 

  • Pennanen T, Caul S, Daniell TJ, Griffiths BS, Ritz K, Wheatley RE (2004) Community-level responses of metabolically-active soil microorganisms to the quantity and quality of substrate inputs. Soil Biol Biochem 36:841–848

    CAS  Google Scholar 

  • Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470

    Google Scholar 

  • Phillips RP, Erlitz Y, Bier R, Bernhardt ES (2008) New approach for capturing soluble root exudates in forest soils. Funct Ecol 22:990–999

    Google Scholar 

  • Ping LY, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    PubMed  CAS  Google Scholar 

  • Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2406

    CAS  Google Scholar 

  • Powell M, Schlosser W, Ebel E (2004) Considering the complexity of microbial community dynamics in food safety risk assessment. Int J Food Microbiol 90:171–179

    PubMed  Google Scholar 

  • Prosser JI, Rangel-Castro JI, Killham K (2006) Studying plant–microbe interactions using stable isotope technologies. Curr Opin Biotechnol 17:98–102

    PubMed  CAS  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–1581

    PubMed  CAS  Google Scholar 

  • Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245:147–162

    CAS  Google Scholar 

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291

    Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Phys 148:1547–1556

    CAS  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    CAS  Google Scholar 

  • Salles JF, van Veen JA, van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70:4012–4020

    PubMed  CAS  Google Scholar 

  • Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotech 15:363–368

    CAS  Google Scholar 

  • Savka MA, Dessaux Y, Oger P, Rossbach S (2002) Engineering bacterial competitiveness and persistence in the phytosphere. Mol Plant Microbe Interact 15:866–874

    PubMed  CAS  Google Scholar 

  • Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG et al (2008) Plant-soil-microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781

    PubMed  Google Scholar 

  • Shaharoona B, Imran M, Arshad M, Khalid A (2011) Manipulation of ethylene synthesis in roots through bacterial ACC deaminase for improving nodulation in legumes. Crit Rev Plant Sci 30:279–291

    CAS  Google Scholar 

  • Shen H, Wang XC, Shi WM, Cao ZH, Yan XL (2001) Isolation and identification of specific root exudates in elephantgrass in response to mobilization of iron- and aluminum-phosphates. J Plant Nutr 24:1117–1130

    CAS  Google Scholar 

  • Shi S, Condron L, Larsen S, Richardson AE, Jones E, Jiao J et al (2011) In situ sampling of low molecular weight organic anions from rhizosphere of radiata pine (Pinus radiata) grown in a rhizotron system. Environ Exp Bot 70:131–142

    CAS  Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathology 37:473–491

    CAS  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. PNAS 96:4786–4790

    PubMed  CAS  Google Scholar 

  • Sneh B, Pozniak D, Salomon D (1987) Soil suppressiveness to Fusarium Wilt of melon, induced by repeated croppings of resistant varieties of melons. J Phytopathology 120:347–354

    Google Scholar 

  • Sugiyama A, Vivanco JM, Jayanty SS, Manter DK (2010) Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis 94:1329–1335

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    PubMed  CAS  Google Scholar 

  • Tikhonovich IA, Provorov NA (2011) Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–168

    CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae F (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Tracy BF, Sanderson MA (2004) Forage productivity, species evenness and weed invasion in pasture communities. Agr Ecosyst Environ 102:175–183

    Google Scholar 

  • Ulrich A, Becker R (2006) Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol Ecol 56:430–443

    PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    PubMed  CAS  Google Scholar 

  • van Elsas JD, Costa R, Jansson J, Sjoling S, Bailey M, Nalin R et al (2008) The metagenomics of disease-suppressive soils – Experiences from the METACONTROL project. Trends Biotechnol 26:591–601

    PubMed  Google Scholar 

  • van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. PNAS 109:1159–1164

    PubMed  Google Scholar 

  • Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813

    CAS  Google Scholar 

  • Weisskopf L, Fromin N, Tomasi N, Aragno M, Martinoia E (2005) Secretion activity of white lupin’s cluster roots influences bacterial abundance, function and community structure. Plant Soil 268:181–194

    CAS  Google Scholar 

  • West S, Kiers E, Pen I, Denison R (2002) Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? J Evol Biol 15:830–837

    Google Scholar 

  • Wilsey BJ, Potvin C (2000) Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology 81:887–892

    Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    CAS  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K et al (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

    PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathology 48:93–117

    CAS  Google Scholar 

Download references

Acknowledgements

M. Bakker is supported by a USDA NIFA AFRI Postdoctoral Fellowship grant (2011-67012-30938). Work in the J. Vivanco lab is supported by a grant from the National Science Foundation (MCB-0950857).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew G. Bakker or Jorge M. Vivanco.

Additional information

Responsible Editor: Philippe Hinsinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, M.G., Manter, D.K., Sheflin, A.M. et al. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360, 1–13 (2012). https://doi.org/10.1007/s11104-012-1361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1361-x

Keywords

Navigation