[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fast and stable evaluation of box-splines via the BB-form

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

To repeatedly evaluate linear combinations of box-splines in a fast and stable way, in particular along knot planes, the box-spline is converted to and tabulated as piecewise polynomial in BB-form (Bernstein–Bézier-form). We show that the BB-coefficients can be derived and stored as integers plus a rational scale factor and derive a hash table for efficiently accessing the polynomial pieces. This pre-processing, the resulting evaluation algorithm and use in a widely-used ray-tracing package are illustrated for splines based on two trivariate box-splines: the seven-directional box-spline on the Cartesian lattice and the six-directional box-spline on the face-centered cubic lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casciola, G., Franchini, E., Romani, L.: The mixed directional difference-summation algorithm for generating the Bézier net of a trivariate four-direction box-spline. Numer. Algorithms 43(1), 1017–1398 (2006)

    Article  MathSciNet  Google Scholar 

  2. Cavaretta, A.S., Micchelli, C.A., Dahmen, W.: Stationary Subdivision. American Mathematical Society, Boston, MA, USA (1991)

    Google Scholar 

  3. Chui, C.K., Lai, M.-J.: Algorithms for generating B-nets and graphically displaying spline surfaces on three- and four-directional meshes. Comput. Aided Geom. Des. 8(6), 479–493 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chung, K.C., Yao, T.H.: On lattices admitting unique lagrange interpolations. SIAM J. Numer. Anal. 14(4), 735–743 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Condat, L., Van De Ville, D.: Three-directional box-splines: characterization and efficient evaluation. IEEE Signal Process. Lett. 13(7), 417–420 (2006)

    Article  Google Scholar 

  6. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, third edn. Springer-Verlag New York, Inc., New York, NY, USA (1998)

    Google Scholar 

  7. de Boor, C.: B-form Basics, Geometric Modeling, pp. 131–148. SIAM, Philadelphia, PA (1987)

    Google Scholar 

  8. de Boor, C.: On the evaluation of box splines. Numer. Algor. 5(1–4), 5–23 (1993)

    Article  MATH  Google Scholar 

  9. de Boor, C. Höllig, K., Riemenschneider, S.: Box Splines. Springer-Verlag New York, Inc., New York, NY, USA (1993)

    MATH  Google Scholar 

  10. Entezari, A.: Optimal sampling lattices and trivariate box splines. Ph.D. thesis, Simon Fraser University, Vancouver, Canada. http://www.cs.sfu.ca/~torsten/Publications/Thesis/entezari.pdf (July 2007)

  11. Entezari, A., Möller, T.: Extensions of the Zwart-Powell box spline for volumetric data reconstruction on the Cartesian lattice. IEEE Trans. Vis. Comput. Graph. 12(5), 1337–1344 (2006)

    Article  Google Scholar 

  12. Fuchs, H., Kedem, Z.M., Naylor, B.F.: On visible surface generation by a priori tree structures. In: SIGGRAPH ‘80: Proceedings of the 7th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA), pp. 124–133. ACM Press (1980)

  13. Dæhlen, M.: On the Evaluation of Box Splines. Mathematical Methods in Computer Aided Geometric Design, pp. 167–179 (San Diego, CA, USA). Academic Press Professional, Inc. (1989)

  14. Jetter, K., Stöckler, J.: Algorithms for cardinal interpolation using box splines and radial basis functions. Numer. Math. 60(1), 97–114 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim, M.: tribox: Matlab packages for evaluation of 6- and 7-directional trivariate box-splines. http://www.cise.ufl.edu/research/SurfLab/tribox

  16. Kobbelt, L.: Stable evaluation of box-splines. Numer. Algor. 14(4), 377–382 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lai, M.-J.: Fortran subroutines for B-nets of box splines on three- and four-directional meshes. Numer. Algor. 2(1), 33–38 (1992)

    Article  MATH  Google Scholar 

  18. MathWorks: Matlab 7 Function Reference: volume 2 (F–O) http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/refbook2.pdf (2006)

  19. MathWorks: Matlab 7 Function Reference: volume 3 (P–Z) http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/refbook3.pdf (2006)

  20. McCool, M.D.: Accelerated evaluation of box splines via a parallel inverse FFT. Comput. Graph. Forum 15(1), 35–45 (1996)

    Article  MathSciNet  Google Scholar 

  21. Naylor, B.F.: Binary space partitioning trees. In: Mehta, D.P., Sahni, S. (eds) Handbook of Data Structures and Applications. Chapman & Hall (2005)

  22. Nicolaides, R.A.: On a class of finite elements generated by lagrange interpolation. SIAM J. Numer. Anal. 9(3), 435–445 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  23. Persistence of Vision Pty. Ltd.: POV-Ray: the Persistence of Vision Raytracer. http://www.povray.org

  24. Peters, J.: C 2 surfaces built from zero sets of the 7-direction box spline. In: Mullineux, G. (ed.) IMA Conference on the Mathematics of Surfaces, pp. 463–474. Clarendon Press (1994)

  25. Peters, J., Wittman, M.: Box-spline based CSG blends. In: Proceedings of the Fourth ACM Symposium on Solid Modeling and Applications, pp. 195–205. SIGGRAPH, ACM Press (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Peters, J. Fast and stable evaluation of box-splines via the BB-form. Numer Algor 50, 381–399 (2009). https://doi.org/10.1007/s11075-008-9231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9231-6

Keywords

Navigation