Abstract
To repeatedly evaluate linear combinations of box-splines in a fast and stable way, in particular along knot planes, the box-spline is converted to and tabulated as piecewise polynomial in BB-form (Bernstein–Bézier-form). We show that the BB-coefficients can be derived and stored as integers plus a rational scale factor and derive a hash table for efficiently accessing the polynomial pieces. This pre-processing, the resulting evaluation algorithm and use in a widely-used ray-tracing package are illustrated for splines based on two trivariate box-splines: the seven-directional box-spline on the Cartesian lattice and the six-directional box-spline on the face-centered cubic lattice.
Similar content being viewed by others
References
Casciola, G., Franchini, E., Romani, L.: The mixed directional difference-summation algorithm for generating the Bézier net of a trivariate four-direction box-spline. Numer. Algorithms 43(1), 1017–1398 (2006)
Cavaretta, A.S., Micchelli, C.A., Dahmen, W.: Stationary Subdivision. American Mathematical Society, Boston, MA, USA (1991)
Chui, C.K., Lai, M.-J.: Algorithms for generating B-nets and graphically displaying spline surfaces on three- and four-directional meshes. Comput. Aided Geom. Des. 8(6), 479–493 (1991)
Chung, K.C., Yao, T.H.: On lattices admitting unique lagrange interpolations. SIAM J. Numer. Anal. 14(4), 735–743 (1977)
Condat, L., Van De Ville, D.: Three-directional box-splines: characterization and efficient evaluation. IEEE Signal Process. Lett. 13(7), 417–420 (2006)
Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, third edn. Springer-Verlag New York, Inc., New York, NY, USA (1998)
de Boor, C.: B-form Basics, Geometric Modeling, pp. 131–148. SIAM, Philadelphia, PA (1987)
de Boor, C.: On the evaluation of box splines. Numer. Algor. 5(1–4), 5–23 (1993)
de Boor, C. Höllig, K., Riemenschneider, S.: Box Splines. Springer-Verlag New York, Inc., New York, NY, USA (1993)
Entezari, A.: Optimal sampling lattices and trivariate box splines. Ph.D. thesis, Simon Fraser University, Vancouver, Canada. http://www.cs.sfu.ca/~torsten/Publications/Thesis/entezari.pdf (July 2007)
Entezari, A., Möller, T.: Extensions of the Zwart-Powell box spline for volumetric data reconstruction on the Cartesian lattice. IEEE Trans. Vis. Comput. Graph. 12(5), 1337–1344 (2006)
Fuchs, H., Kedem, Z.M., Naylor, B.F.: On visible surface generation by a priori tree structures. In: SIGGRAPH ‘80: Proceedings of the 7th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA), pp. 124–133. ACM Press (1980)
Dæhlen, M.: On the Evaluation of Box Splines. Mathematical Methods in Computer Aided Geometric Design, pp. 167–179 (San Diego, CA, USA). Academic Press Professional, Inc. (1989)
Jetter, K., Stöckler, J.: Algorithms for cardinal interpolation using box splines and radial basis functions. Numer. Math. 60(1), 97–114 (1991)
Kim, M.: tribox: Matlab packages for evaluation of 6- and 7-directional trivariate box-splines. http://www.cise.ufl.edu/research/SurfLab/tribox
Kobbelt, L.: Stable evaluation of box-splines. Numer. Algor. 14(4), 377–382 (1997)
Lai, M.-J.: Fortran subroutines for B-nets of box splines on three- and four-directional meshes. Numer. Algor. 2(1), 33–38 (1992)
MathWorks: Matlab 7 Function Reference: volume 2 (F–O) http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/refbook2.pdf (2006)
MathWorks: Matlab 7 Function Reference: volume 3 (P–Z) http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/refbook3.pdf (2006)
McCool, M.D.: Accelerated evaluation of box splines via a parallel inverse FFT. Comput. Graph. Forum 15(1), 35–45 (1996)
Naylor, B.F.: Binary space partitioning trees. In: Mehta, D.P., Sahni, S. (eds) Handbook of Data Structures and Applications. Chapman & Hall (2005)
Nicolaides, R.A.: On a class of finite elements generated by lagrange interpolation. SIAM J. Numer. Anal. 9(3), 435–445 (1972)
Persistence of Vision Pty. Ltd.: POV-Ray: the Persistence of Vision Raytracer. http://www.povray.org
Peters, J.: C 2 surfaces built from zero sets of the 7-direction box spline. In: Mullineux, G. (ed.) IMA Conference on the Mathematics of Surfaces, pp. 463–474. Clarendon Press (1994)
Peters, J., Wittman, M.: Box-spline based CSG blends. In: Proceedings of the Fourth ACM Symposium on Solid Modeling and Applications, pp. 195–205. SIGGRAPH, ACM Press (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kim, M., Peters, J. Fast and stable evaluation of box-splines via the BB-form. Numer Algor 50, 381–399 (2009). https://doi.org/10.1007/s11075-008-9231-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-008-9231-6