[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fixed-time synchronization of delayed memristor-based recurrent neural networks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper focuses on the fixed-time synchronization control methodology for a class of delayed memristor-based recurrent neural networks. Based on Lyapunov functionals, analytical techniques, and together with novel control algorithms, sufficient conditions are established to achieve fixed-time synchronization of the master and slave memristive systems. Moreover, the settling time of fixed-time synchronization is estimated, which can be adjusted to desired values regardless of the initial conditions. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology derived in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chua L O. Memristor-the missing circut element. IEEE Trans Circ Theory, 1971, 18: 507–519

    Article  Google Scholar 

  2. Chua L O, Kang S M. Memristive devices and systems. Proc IEEE, 1976, 64: 209–223

    Article  MathSciNet  Google Scholar 

  3. Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80–83

    Article  Google Scholar 

  4. Snider G S. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology, 2007, 18: 365202

    Article  Google Scholar 

  5. Wen S P, Zeng Z G, Huang T W, et al. Fuzzy modeling and synchronization of different memristor-based chaotic circuits. Phys Lett A, 2013, 377: 2016–2021

    Article  MathSciNet  MATH  Google Scholar 

  6. Landsman A S, Schwartz I B. Complete chaotic synchronization in mutually coupled time-delay systems. Phys Rev E Stat Nonlin Soft Matter Phys, 2007, 5: 26–33

    Google Scholar 

  7. Cui B T, Lou X Y. Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control. Chaos Solitons Fract, 2009, 39: 288–294

    Article  MATH  Google Scholar 

  8. Gan Q T, Xu R, Kang X B. Synchronization of chaotic neural networks with mixed time delays. Commun Nonlinear Sci Numer Simul, 2011, 16: 966–974

    Article  MathSciNet  MATH  Google Scholar 

  9. Molaei M R, Umut Ö. Generalized synchronization of nuclear spin generator system. Chaos Solitons Fract, 2008, 37: 227–232

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao J D, Rakkiyappan R, Maheswari K, et al. Exponential H filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci China Tech Sci, 2016, 59: 387–402

    Article  Google Scholar 

  11. Suddheerm K S, Sabir M. Adaptive function projective synchronization of two-cell Quantum-CNN chaotic oscillators with uncertain parameters. Phys Lett A, 2009, 373: 1847–1851

    Article  MATH  Google Scholar 

  12. Chen S, Cao J D. Projective synchronization of neural networks with mixed time-varying delays and parameter mismatch. Nonlinear Dyn, 2012, 67: 1397–1406

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao J D, Li L L. Cluster synchronization in an array of hybrid coupled neural networks with delay. Neural Netw, 2009, 22: 335–342

    Article  MATH  Google Scholar 

  14. Li X D, Bohner M. Exponential synchronization of chaotic neural networks with mixe ddelays and impulsive effects via output coupling with delay feedback. Math Comp Model, 2010, 52: 643–653

    Article  MATH  Google Scholar 

  15. Cao J D, Sivasamy R, Rakkaiyappan R. Sampled-data H synchronization of chaotic Lur’e systems with time delay. Circ Syst Sign Process, 2016, 35: 811–835

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang S F, Guo Z Y, Wang J. Global synchronization of multiple recurrent neural networks with time delays via impulsive interactions. IEEE Trans Neural Netw Learn Syst, in press. doi: 10.1109/TNNLS.2016.2549703

  17. Ding S B, Wang Z S. Stochastic exponential synchronization control of memristive neural networks with multiple time-varying delays. Neurocomputing, 2015, 162: 16–25

    Article  Google Scholar 

  18. Li R X, Wei H Z. Synchronization of delayed Markovian jump memristive neural networks with reaction-diffusion terms via sampled data control. Int J Mach Learn Cyber, 2016, 7: 157–169

    Article  Google Scholar 

  19. Abdurahman A, Jiang H J, Teng Z D. Finite-time synchronization for memristor-based neural networks with timevarying delays. Neural Netw, 2015, 69: 20–28

    Article  Google Scholar 

  20. Wang L M, Shen Y, Yin Q, et al. Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst, 2015, 26: 2033–2042

    Article  MathSciNet  Google Scholar 

  21. Chen J J, Zeng Z G, Jiang P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw, 2014, 51: 1–8

    Article  MATH  Google Scholar 

  22. Wen S P, Zeng Z G, Huang T W, et al. Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators. IEEE Trans Fuzzy Syst, 2014, 22: 1704–1713

    Article  Google Scholar 

  23. Ding S B, Wang Z S. Lag quasi-synchronization for memristive neural networks with switching jumps mismatch. Neural Comput Appl, in press. doi: 10.1007/s00521-016-2291-y

  24. Yang S F, Guo Z Y, Wang J. Robust synchronization of multiple memristive neural networks with uncertain parameters via nonlinear coupling. IEEE Trans Syst Man Cyber Syst, 2015, 45: 1077–1086

    Article  Google Scholar 

  25. Wan Y, Cao J D. Periodicity and synchronization of coupled memristive neural networks with supremums. Neurocomputing, 2015, 159: 137–143

    Article  Google Scholar 

  26. Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control, 2012, 57: 2106–2110

    Article  MathSciNet  Google Scholar 

  27. Levant A. On fixed and finite time stability in sliding mode control. In: Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, 2013. 4260–4265

    Chapter  Google Scholar 

  28. Parsegv S, Polyakov A, Shcherbakov P. Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. In: Proceedings of the 51st IEEE Conference on Decision and Control, Maui, 2013. 7732–7737

    Google Scholar 

  29. Parsegv S, Polyakov A, Shcherbakov P. On fixed and finite time stability in sliding mode control. In: Proceedings of the 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems, Koblenz, 2013. 110–115

    Google Scholar 

  30. Zhou Y J, Sun C Y. Fixed time synchronization of complex dynamical networks. In: Proceedings of the Chinese Intelligent Automation Conference. Berlin: Springer, 2015. 338: 163–170

    Google Scholar 

  31. Zuo Z. Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory Appl, 2015, 9: 545–552

    Article  MathSciNet  Google Scholar 

  32. Liu X W, Chen T P. Fixed-time cluster synchronization for complex networks via pinning control. arXiv:1509.03350

  33. Wan Y, Cao J D, Wen G H, et al. Robust fixed-time synchronization of delayed Cohen-Grossberg neural networks. Neural Netw, 2016, 73: 86–94

    Article  Google Scholar 

  34. Clarke F. Optimization and Nonsmooth Analysis. Philadelphia: SIAM, 1987

    MATH  Google Scholar 

  35. Hardy G, Littlewood J, Polya G. Inequalities. 2nd ed. Cambridge: Cambridge University Press, 1952

    MATH  Google Scholar 

  36. Forti M, Grazzini M, Nistri P, et al. Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Phys D Nonlin Phenom, 2006, 214: 88–99

    Article  MathSciNet  MATH  Google Scholar 

  37. Chua L O. Resistance switching memories are memristor. Appl Phys A, 2011, 102: 765–783

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by National Natural Science Foundation of China (Grant Nos. 61573096, 61272530), Natural Science Foundation of Jiangsu Province of China (Grant No. BK2012741), and “333 Engineering” Foundation of Jiangsu Province of China (Grant No. BRA2015286), and Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ1663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinde Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Li, R. Fixed-time synchronization of delayed memristor-based recurrent neural networks. Sci. China Inf. Sci. 60, 032201 (2017). https://doi.org/10.1007/s11432-016-0555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-0555-2

Keywords

Navigation