Abstract
This paper provides a detailed analysis of a primal-dual interior-point method for PDE-constrained optimization. Considered are optimal control problems with control constraints in L p. It is shown that the developed primal-dual interior-point method converges globally and locally superlinearly. Not only the easier L ∞-setting is analyzed, but also a more involved L q-analysis, q < ∞, is presented. In L ∞, the set of feasible controls contains interior points and the Fréchet differentiability of the perturbed optimality system can be shown. In the L q-setting, which is highly relevant for PDE-constrained optimization, these nice properties are no longer available. Nevertheless, a convergence analysis is developed using refined techniques. In parti- cular, two-norm techniques and a smoothing step are required. The L q-analysis with smoothing step yields global linear and local superlinear convergence, whereas the L ∞-analysis without smoothing step yields only global linear convergence.
Similar content being viewed by others
References
Allgower E., Böhmer K., Potra F., Rheinboldt W. (1986). A mesh-independence principle for operator equations and their disetizations. SIAM J. Numer. Anal. 23: 160–169
Alt W. (1998). Disetization and mesh-independence of Newton’s method for generalized equations. In: Fiacco, A. (eds) Mathematical programming with data perturbations. Lecture notes in pure and applied mathamatics 195, pp 1–30. Dekker, New York
Bergounioux M., Haddou M., Hintermüller M., Kunisch K. (2000). A comparison of a moreau-yosida based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11: 495–521
Bergounioux M., Ito K., Kunisch K. (1999). Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4): 1176–1194
Bonnans J.F., Shapiro A. (1998). Optimization problems with perturbations: a guided tour. SIAM Rev. 40(2): 228–264
Forsgren A., Gill P.E., Wright M.H. (2002). Interior methods for nonlinear optimization. SIAM Rev. 44: 525–597
Hintermüller M., Ito K., Kunisch K. (2003). The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3): 865–888
Hintermüller M., Ulbrich M. (2004). A mesh-independence result for semismooth Newton methods. Math. Program. Ser. B 101(1): 151–184
Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40(3), 925–946 (electronic) (2001)
Jost J. (1998). Postmodern Analysis. Springer, Heidelberg
Kelley C.T., Sachs E.W. (1994). Multilevel algorithms for constrained compact fixed point problems. SIAM J. Sci. Comput. 15: 645–667
Mittelmann H.D., Maurer H. (2000). Solving elliptic control problems with interior point and SQP methods: Control and state constraints. J. Comp. Appl. Math. 120: 175–195
Prüfert, U., Tröltzsch, F., Weiser, M.: The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comp. Opt. Appl. (to appear)
Kunisch K., los Reyes J.C. (2005). A semi-smooth Newton method for control constrained boundary optimal control of the Navier-Stokes equations. Nonlinear Anal. 62(7): 1289–1316
Robinson S.M. (1976). Stability theory for systems of inequalities. II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13: 497–513
Schiela, A., Weiser, M.: Superlinear convergence of the control reduced interior point method for PDE constrained optimization. Comp. Opt. Appl. (to appear)
Tröltzsch F. (2005). Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen. Vieweg, Berlin
Ulbrich M. (2002). Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in function spaces. Habilitationsschrift, Zentrum Mathematik, TU München
Ulbrich M. (2003). Constrained optimal control of Navier-Stokes flow by semismooth Newton methods. Syst. Control Lett. 48(3–4): 297–311
Ulbrich M. (2003). Semismooth Newton methods for operator equations in function spaces. SIAM J.Optim. 13(3): 805–841
Ulbrich M., Ulbrich S. (1999). Global convergence of trust-region interior-point algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds. SIAM J. Control Optim. 37(3): 731–764
Ulbrich M., Ulbrich S. (2000). Superlinear convergence of affine-scaling interior-point Newton methods for infinite-dimensional nonlinear problems with pointwise bounds. SIAM J. Control Optim. 38(6): 1938–1984
Weiser M. (2005). Interior point methods in function space. SIAM J. Control Optim. 44(5): 1766–1786
Weiser, M., Deuflhard, P.: Inexact central path following algorithms for optimal control problems. SIAM J. Control Optim. (to appear)
Weiser, M., Gänzler, T., Schiela, A.: A control reduced primal interior point method for a class of control constrained optimal control problems. Comp. Opt. Appl. (to appear)
Weiser M., Schiela A. (2004). Function space interior point methods for PDE constrained optimization. PAMM 4(1): 43–46
Zeidler E. (1985). Nonlinear functional analysis and its applications III. Springer, New York
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is dedicated to Steve Robinson on the occasion of his 65th birthday.
Research of M. Ulbrich supported by DFG grant UL 348/2-1. Research of second author supported by DFG grant UL 158/6-1 and by SFB 666.
Rights and permissions
About this article
Cite this article
Ulbrich, M., Ulbrich, S. Primal-dual interior-point methods for PDE-constrained optimization. Math. Program. 117, 435–485 (2009). https://doi.org/10.1007/s10107-007-0168-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-007-0168-7
Keywords
- Primal-dual interior point methods
- PDE-constraints
- Optimal control
- Control constraints
- Superlinear convergence
- Global convergence