[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Dynamics of the root/soil pathogens and antagonists in organic and integrated production of potato

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Microbial communities in the root, rhizoplane, and rhizosphere and non-rhizosphere soil in potato, in organic and integrated production systems, were compared at the emergence and flowering phases of plant development. Microorganisms were identified on the basis of their morphology. The dominant groups included Clonostachys + Gliocladium + Trichoderma, Fusarium + Gibberella + Haematonectria + Neonectria, Paecilomyces, Penicillium and Phoma. Microbial density at the flowering phase was often significantly greater in roots and non-rhizosphere soil than in the rhizoplane and rhizosphere. Diversity of the communities often remained stable or was greater at the emergence phase. The density of bacteria changed with time. The density of Pseudomonas often decreased while Streptomyces significantly increased with time. Changes in densities of pathogens and antagonists decreased the suppressiveness of the habitat towards soil-borne potato pathogens at the flowering phase. The study contributes information that will help to: (a) understand the epidemiology of some potato diseases, (b) make decisions on the economic and ecological aspects of chemical control in potato, (c) develop strategies for manipulation of the soil microbial environment as a viable crop management technique, and (d) develop prognosis models for potato diseases in central Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. J. (1979). Factors affecting survival of Phoma exigua var. foveata in soil. Transactions of the British Mycological Society, 73, 91–97.

    Article  Google Scholar 

  • Alkan, N., Fluhr, R., Sherman, A., & Prusky, D. (2008). Role of ammonia secretion and pH modulation on pathogenicity of Colletotrichum coccodes on tomato fruit. Molecular Plant -Microbe Interactions, 21, 1058–1066.

    Article  PubMed  CAS  Google Scholar 

  • Cabello, M., & Arambarri, A. (2002). Diversity in soil fungi from undisturbed and disturbed Celtis tala and Scutia buxifolia forests in the eastern Buenos Aires province (Argentina). Microbiological Research, 157, 115–125.

    Article  PubMed  Google Scholar 

  • Chand, T., & Logan, C. (1984). Post-harvest development of Rhizoctonia solani and its penetration of potato tubers in Northern Ireland. Transactions of the British Mycological Society, 82, 615–619.

    Article  Google Scholar 

  • Dillard, H. R. (1990). Survival of Colletotrichum coccodes in New York. Phytopathology, 80, 1026.

    Google Scholar 

  • Dillard, H. R., & Cobb, A. C. (1993). Persistence of Colletotrichum coccodes on tomato roots and in soil. Phytopathology, 83, 1345.

    Google Scholar 

  • Dillard, H. R., & Cobb, A. C. (1998). Survival of Colletotrichum coccodes in infected tomato tissue and in soil. Plant Diseases, 82, 235–238.

    Article  Google Scholar 

  • Ditzler, C. A., & Tugel, A. J. (2002). Soil quality fiield tools: Experience of USDA-NRCS soil quality Institute. Agronomy Journal, 94, 33–38.

    Article  Google Scholar 

  • Dix, N. J., & Webster, J. (1995). Fungal ecology. London: Chapman and Hall.

    Google Scholar 

  • Domsch, K. H., Gams, W., & Anderson, T.-H. (1993). Compendium of soil fungi. London: Academic.

    Google Scholar 

  • Farley, J. D. (1976). Survival of Colletotrichum coccodes in soil. Phytopathology, 66, 640–641.

    Article  Google Scholar 

  • Finolti, E., Moretto, D., Marsella, R., & Mercantini, R. (1993). Temperature effects and fatty acid patterns in Geomyces species isolated from Antarctic soil. Polar Biology, 13, 127–130.

    Google Scholar 

  • Frankland, J. C. (1981). Mechanisms in fungal successions. In D. T. Wicklow & G. C. Carroll (Eds.), The fungal community, its organization and role in the ecosystem (pp. 403–426). New York: Marcel Dekker.

    Google Scholar 

  • Gilpatrick, D. (1969). Role of ammonia in the control of avocado root rot with alfalfa meal soil amendment. Phytopathology, 59, 973–978.

    CAS  Google Scholar 

  • Hagedorn, C., & Holt, J. G. (1975). Ecology of soil arthrobacters in Clarion–Webster toposequences of Iowa. Applied Microbiology, 29, 211–218.

    PubMed  CAS  Google Scholar 

  • Harman, G. E., & Kubicek, C. P. (1998). Trichoderma and gliocladium, enzymes, biological control and commercial applications. London: Taylor and Francis.

    Google Scholar 

  • Hide, G. A. (1986). Phoma and Fusarium rots on imported ‘new’ potatoes. Plant Pathology, 35, 126–127.

    Article  Google Scholar 

  • Huston, M. (1979). A general hypothesis of species diversity. American Naturalist, 113, 81–101.

    Article  Google Scholar 

  • Ingram, J., & Johnson, D. (2010). Colonization of potato roots and stolons by Colletotrichum coccodes from tuberborne inoculum. American Journal of Potato Research, 87, 382–389.

    Article  Google Scholar 

  • Kawasaki, T., Miyata, I., Esaki, K., & Nose, Y. (1969). Thiamine uptake in Escherichia coli: I. General properties of thiamine uptake system in Escherichia coli. Archives of Biochemistry and Biophysics, 131, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Kent, A. D., & Triplett, E. W. (2002). Microbial communities and their interactions in soil and rhizosphere ecosystems. Annual Review of Microbiology, 56, 11–236.

    Article  Google Scholar 

  • Krauss, U., & Soberanis, W. (2001). Biocontrol of cocoa pod diseases with mycoparasite mixtures. Biological Control, 22, 149–158.

    Article  Google Scholar 

  • Lemańczyk, G., & Łukanowski, A. (2000). Fungal communities and health status of winter wheat roots cultivated after lupine and its mixtures. Phytopathologia Polonica, 20, 139–154.

    Google Scholar 

  • Lemańczyk, G., & Sadowski, C. K. (2000). The effect of different forecrops on the occurrence of Fusarium spp. in winter wheat rhizosphere. Phytopathologia Polonica, 20, 131–138.

    Google Scholar 

  • Lemańczyk, G., & Sadowski, C. K. (2002). Fungal communities and health status of roots of winter wheat cultivated after oats and oats mixed with other crops. BioControl, 47, 349–361.

    Article  Google Scholar 

  • Lenc, L. (2006). Rhizoctonia solani and Streptomyces scabies on sprouts and tubers of potato grown in organic and integrated systems, and fungal communities in the soil habitat. Phytopathologia Polonica, 42, 13–28.

    Google Scholar 

  • Li, S., Hartman, G. L., & Gray, L. E. (1998). Chlamydospore formation, production, and nuclear status in Fusarium solani f. sp. glycines soybean sudden death syndrome-causing isolates. Mycologia, 90, 414–21.

    Article  Google Scholar 

  • Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton: Princeton University Press.

    Google Scholar 

  • Manici, L. M., & Cerato, C. (1994). Pathogenicity of Fusarium oxysporum f.sp. tuberosi isolates from tubers and potato plants. Potato Research, 37, 129–134.

    Article  Google Scholar 

  • Mańka, K. (1974). Zbiorowiska grzybów jako kryterium oceny wpływów środowiska na choroby roślin. (Fungal communities as a criterion for estimating the effect of the environment on plant diseases). Zeszyty Problemowe Postepów Nauk Rolniczych, 160, 9–23.

    Google Scholar 

  • Marais, L. (1990). Efficacy of fungicides against Colletotrichum coccodes on potato tubers. Potato Research, 33, 275–81.

    Article  CAS  Google Scholar 

  • Morita, R. Y., & Buck, G. E. (1974). Low temperature inhibition of substrate uptake. In R. R. Colwel & R. Y. Morita (Eds.), Effect of ocean environment on microbial activities. Baltimore: University Park Press.

    Google Scholar 

  • Paparu, P., Dubois, T., Gold, C. S., Niere, B., Adipala, E., & Coyne, D. (2008). Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants. Microbial Ecology, 55, 561–568.

    Article  PubMed  Google Scholar 

  • Piper, S., Martınez, A., Hidalgo, E., & Krauss, U. (2000). Effect of formulation on population dynamics of mycoparasites on the surface of cocoa pods. In C. L. Bong, C. H. Lee, & F. S. Shari (Eds.), Proceedings of the INCOPED 3rd international seminar on cocoa pest and diseases (pp. 21–26). Kota Kinabalu: Sabah.

    Google Scholar 

  • Piperno, J. R., & Oxender, D. L. (1968). Amino acid transport system in Escherichia coli K12. Journal of Biological Chemistry, 243, 5914–5920.

    PubMed  CAS  Google Scholar 

  • Pitt, J. I. (2002). Biology and ecology of toxigenic Penicillium species. Mycotoxins and food safety. Advances in experimental medicine and biology, 504, 29–41.

    Article  PubMed  CAS  Google Scholar 

  • Powlson, D. S., & Jenkinson, D. S. (1981). A comparison of the organic matter, biomass, and mineralizable nitrogen contents of ploughed and direct-drilled soils. Journal of Agricultural Sciences, Cambridge, 97, 713–721.

    Article  CAS  Google Scholar 

  • Powlson, D. S., Brookes, P. C., & Christensen, B. T. (1987). Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19, 159–164.

    Article  CAS  Google Scholar 

  • Read, P. J., & Hide, G. A. (1995). Effects of fungicides on the growth and conidial germination of Colletotrichum coccodes and on the development of black dot disease of potatoes. Annals of Applied Biology, 126, 437–447.

    Article  CAS  Google Scholar 

  • Read, P. J., Storey, R. M., & Hudson, D. R. (1995). A survey of black dot and other fungal tuber blemishing diseases in British potato crops at harvest. Annals of Applied Biology, 126, 249–258.

    Article  Google Scholar 

  • Saffigna, P. G., Powlson, D. S., Brookes, P. C., & Thomas, G. A. (1989). Influence of sorghum residues and tillage on soil organic matter and soil micro- bial biomass in an Australian Vertisol. Soil Biology and Biochemistry, 21, 759–765.

    Article  Google Scholar 

  • Schippers, B., & Old, K. M. (1974). Factors affecting chlamydospores formation by Fusarium solani f. sp. cucurbitae in pure cultures. Soil Biology and Biochemistry, 6, 153–160.

    Article  Google Scholar 

  • Schlatter, D., Fubuh, A., Xiao, K., Hernandez, D., Hobbie, S., & Kinkel, L. (2009). Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microbial Ecology, 57, 413–420.

    Article  PubMed  Google Scholar 

  • Scudamore, K. A., & Livesey, T. (1998). Occurrence and significance of mycotoxins in forage crops and silage: a review. Journal of the Science of Food and Agriculture, 77, 1–17.

    Article  CAS  Google Scholar 

  • Shukla, A. K., Tiwari, B. K., & Mishra, R. R. (1990). Decomposition of potato litter in relation to microbial population and plant nutrients under field condition. Pedobiologia, 34, 287–298.

    Google Scholar 

  • Simon, A., & Ridge, E. H. (1974). The use of ampicillin in a simplified selective medium for the isolation of fluorescent Pseudomonas. Journal of Applied Bacteriology, 37, 459–460.

    Article  PubMed  CAS  Google Scholar 

  • Singh, B. P., Nagaich, B. B., & Saxena, S. K. (1987). Fungi associated with dry rot of potatoes, their frequency and distribution. Indian Journal of Plant Pathology, 5, 142–145.

    Google Scholar 

  • Suárez-Estrella, F., Vargas-Garcia, M. C., Lopez, M. J., & Moreno, J. (2004). Survival of Fusarium oxysporum f. sp. melonis on plant waste. Crop Protection, 23, 127–133.

    Article  Google Scholar 

  • Tenuta, M. (2001). The role of nitrogen transformation products in the control of soil-borne plant pathogens and pests. Ph.D. Thesis. University of Western Ontario, London, Ontario.

  • Thanassoulopoulos, C. C., & Kitsos, G. T. (1985). Studies on Fusariun wilt of potatoes. 1. Plant wilt and tuber infection in naturally infected fields. Potato Research, 28, 507–514.

    Article  Google Scholar 

  • Theron, D. J. (1991). Prediction of potato dry rot based on tile presence of Fttsarittm in soil adhering to tubers at harvest. Plant Diseses, 75, 126–130.

    Article  Google Scholar 

  • Tivoli, B., Torres, H., & French, E. R. (1988). Inventaire, distribution et agressivité des espéces ou variétés de Fusarium rencontrées sur la pomme de terre ou dans son environnement dans différentes zones agroécologiques du Pérou. Potato Research, 31, 681–690.

    Article  Google Scholar 

  • Upstone, M. E. (1970). A corky rot of Jersey Royal potato tubers caused by Fusarium oxysporum. Plant Patholology, 19, 165–167.

    Article  Google Scholar 

  • Williams, S. T., & Davies, F. L. (1965). Use of antibiotics for selective isolation and enumeration of Actinomycetes in soil. Journal of General Microbiology, 38, 251–261.

    PubMed  CAS  Google Scholar 

  • Windels, C. E. (1993). Fusarium species stored on silica gel and soil for ten years. Mycologia, 85, 21–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Kwaśna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenc, L., Kwaśna, H. & Sadowski, C. Dynamics of the root/soil pathogens and antagonists in organic and integrated production of potato. Eur J Plant Pathol 131, 603–620 (2011). https://doi.org/10.1007/s10658-011-9834-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9834-y

Keywords

Navigation