[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A Lavrentiev type regularization technique for solving elliptic boundary control problems with pointwise state constraints is considered. The main concept behind this regularization is to look for controls in the range of the adjoint control-to-state mapping. After investigating the analysis of the method, a semismooth Newton method based on the optimality conditions is presented. The theoretical results are confirmed by numerical tests. Moreover, they are validated by comparing the regularization technique with standard numerical codes based on the discretize-then-optimize concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert, J.-J., Raymond, J.-P.: Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 3&4, 235–250 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37, 1176–1194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bergounioux, M., Kunisch, K.: Primal-dual active set strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22, 193–224 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4, 1309–1322 (1986)

    Article  MathSciNet  Google Scholar 

  5. Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31, 993–1006 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38(4), 1200–1216 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hackbusch, W.: Multigrid Methods and Applications. Springer Series in Computational Mathematics, vol. 4. Springer, Berlin (1985)

    Google Scholar 

  8. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  9. Hintermüller, M., Tröltzsch, F., Yousept, I.: Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems (2006)

  10. Ito, K., Kunisch, K.: Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces. Nonlinear Anal. TMA 41, 591–616 (2000)

    Article  MathSciNet  Google Scholar 

  11. Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control problems. Syst. Control Lett. 50, 221–228 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lavrentiev, M.M.: Some Improperly Posed Problems of Mathematical Physics. Springer, New York (1967)

    MATH  Google Scholar 

  13. Maurer, H., Mittelmann, H.D.: Optimization techniques for solving elliptic control problems with control and state constraints. I. Boundary control. J. Comput. Appl. Math. 16, 29–55 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Meyer, C., Rösch, A., Tröltzsch, F.: Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33, 209–228 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Meyer, C., Tröltzsch, F.: On an elliptic optimal control problem with pointwise mixed control-state constraints. In: Seeger, A. (ed.) Recent Advances in Optimization. Proceedings of the 12th French-German-Spanish Conference on Optimization held in Avignon, September 20–24, 2004. Lectures Notes in Economics and Mathematical Systems, vol. 563, pp. 187–204. Springer, Berlin (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tröltzsch.

Additional information

The authors acknowledge support through DFG Research Center “Mathematics for Key Technologies” (FZT 86) in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tröltzsch, F., Yousept, I. A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. Comput Optim Appl 42, 43–66 (2009). https://doi.org/10.1007/s10589-007-9114-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9114-0

Keywords

Navigation