Summary
In this study we report on the 1H, 13C and 15N NMR chemical shifts for the random coil state and nearest-neighbor sequence effects measured from the protected linear hexapeptide Gly-Gly-X-Y-Gly-Gly (where X and Y are any of the 20 common amino acids). We present data for a set of 40 peptides (of the possible 400) including Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly, measured under identical aqueous conditions. Because all spectra were collected under identical experimental conditions, the data from the Gly-Gly-X-Ala-Gly-Gly series provide a complete and internally consistent set of 1H, 13C and 15N random coil chemical shifts for all 20 common amino acids. In addition, studies were also conducted into nearest-neighbor effects on the random coil shift arising from a variety of X and Y positional substitutions. Comparisons between the chemical shift measurements obtained from Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly reveal significant systematic shift differences arising from the presence of proline in the peptide sequence. Similarly, measurements of the chemical shift changes occurring for both alanine and proline (i.e., the residues in the Y position) are found to depend strougly on the type of amino acid substituted into the X position. These data lend support to the hypothesis that sequence effects play a significant role in determining peptide and protein chemical shifts.
Similar content being viewed by others
Abbreviations
- DIEA:
-
diisopropylethylamine
- DMF:
-
dimethylformamide
- DMSO:
-
dimethyl sulfoxide
- DSS:
-
2,2-dimethyl-2-silapentane-5-sulfonic acid
- HMQC:
-
heteronuclear multiple-quantum coherence
- HOBt:
-
N-hydroxybenzotriazole
- MBHA:
-
4-methylbenzyhydrylamine
- NOE:
-
nuclear Overhauser effect
- TBTU:
-
2-(benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate
- TFE:
-
trifluoroethanol
- TMS:
-
tetramethylsilane
- TOCSY:
-
total correlation spectroscopy
- TSP:
-
3-(trimethylsilyl)propionate, sodium salt
References
BaxA. and SubramanianJ. (1986) J. Magn. Reson., 67, 565–570.
BraunschweilerL. and ErnstR.R. (1983) J. Magn. Reson., 53, 521–528.
BundiA. and WüthrichK. (1979a) Biopolymers, 18, 285–297.
BundiA. and WüthrichK. (1979b) Biopolymers, 18, 299–311.
DeDiosA.C., PearsonJ.G. and OldfieldE. (1993a) Science, 260, 1491–1495.
DeDiosA.C., PearsonJ.R. and OldfieldE. (1993b) J. Am. Chem. Soc., 115, 9768–9773.
DelgarnoD.C., LevineB.A. and WilliamsR.J.P. (1983) Biosci. Rep., 3, 443–452.
DeMarcoA. (1977) J. Magn. Reson., 26, 527–528.
DysonH.J., RanceM., HoughtenR.A., LernerR.A. and WrightP.E. (1988) J. Mol. Biol., 201, 161–200.
DysonH.J. and WrightP.E. (1991) Annu. Rev. Biophys. Biophys. Chem., 20, 519–538.
EvansP.A., ToppingK.D., WoolfsonD.N. and DobsonC.M. (1991) Protein Struct. Funct. Genet., 9, 248–266.
GippertG.P., YipP.F., WrightP.E. and CaseD.A. (1990) Biochem. Pharmacol., 40, 15–22.
GlushkaJ., LeeM., CoffinS. and CowburnD. (1989) J. Am. Chem. Soc., 111, 7716–7722.
GlushkaJ., LeeM., CoffinS. and CowburnD. (1990) J. Am. Chem. Soc., 112, 2843.
GrathwohlC. and WüthrichK. (1974) J. Magn. Reson., 13, 217–225.
GrassK.-H. and KalbitzerH.R. (1988) J. Magn. Reson., 76, 87–99.
HerranzJ., GonzalezC., RicoM., NietoJ.L. SantoroJ., JimenezM.A., BruixM., NeiraJ.L. and BlancoF.J. (1992) Magn. Reson. Chem., 30, 1012–1018.
HowarthO.W. (1978) Prog. NMR Spectrosc., 12, 1–40.
JimenezM.A., BlancoF.J., RicoM., HerranzJ., SantoroJ. and NietoJ.L. (1992) Eur. J. Biochem., 207, 39–49.
KeimP., VignaR.A., MarshallR.C. and GurdF.R.N. (1973a) J. Biol. Chem., 248, 6104–6113.
KeimP., VignaR.A., MorrowJ.S., MarshallR.C. and GurdF.R.N. (1973b) J. Biol. Chem., 248, 7811–7818.
KeimP., VignaR.A., MorrowA.M., MarshallR.C. and GurdF.R.N. (1974) J. Biol. Chem., 249, 4149–4156.
KricheldorfH.R. (1981) Org. Magn. Reson., 15, 162–177.
LiveD.H., DavisD.G., AgostaW.C. and CowburnD. (1984) J. Am. Chem. Soc., 106, 1939–1943.
MassonA. and WüthrichK. (1973) FEBS lett., 31, 114–118.
MerutkaG., DysonH.J. and WrightP.E. (1995) J. Biomol. NMR, 5, 14–24.
NeriD., WiderG. and WüthrichK. (1992) Proc. Natl. Acad. Sci. USA, 89, 4397–4401.
ÖsapayK. and CaseD.A. (1994) J. Am. Chem. Soc., 113, 9436–9444.
ÖsapayK. and CaseD.A. (1994) J. Biomol. NMR, 4, 215–230.
PastoreA. and SaudekV. (1990) J. Magn. Reson., 90, 165–176.
ReilyM.D., ThanabalV. and OmecinskyD.O. (1992) J. Am. Chem. Soc., 114, 6251–6252.
RicharzR. and WüthrichK. (1978) Biopolymers, 17, 2133–2141.
SaitoH. (1986) Magn. Reson. Chem., 24, 835–852.
SperaS. and BaxA. (1991) J. Am. Chem. Soc., 113, 5490–5492.
SrinivasanP.R. and LichterR.L. (1977) J. Magn. Reson., 28, 227–234.
StatesD.J., HaberkornR.A. and RubenD.J. (1982) J. Magn. Reson., 48, 286–292.
SzilagyiL. and JardetzkyO. (1989) J. Magn. Reson. 83, 441–449.
ThanabalV., OmecinskyD.O., ReilyM.D. and CodyW.L. (1994) J. Biomol. NMR, 4, 47–59.
TorchiaD.A., LyerlaJ.R. and QuattroneA.J. (1975) Biochemistry, 14, 887–892.
WilliamsonM.P. (1990) Biopolymers, 29, 1423–1431.
WilliamsonM.P., AsakuraT., NakamuraE. and DemuraM. (1992) J. Biomol. NMR, 2, 83–98.
WilmotC.M. and ThorntonJ.M. (1988) J. Mol. Biol., 203, 221–232.
Wishart, D.S. (1991) Ph.D. Thesis, Yale University, New Haven, CT.
WishartD.S., SykesB.D. and RichardsF.M. (1991a) FEBS Lett., 193, 72–80.
WishartD.S., SykesB.D. and RichardsF.M. (1991b) J. Mol. Biol., 222, 311–333.
WishartD.S., SykesB.D. and RichardsF.M. (1992) Biochemistry, 31, 1647–1651.
WishartD.S. and SykesB.D. (1994a) J. Biomol. NMR, 4, 171–180.
WishartD.S. and SykesB.D. (1994b) Methods Enzymol., 239, 363–392.
Wishart, D.S., Bigam, C.G., Yao, J., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995) J. Biomol. NMR, submitted for publication.
WitanowskiM., StefaniukL. and WebbG.A. (1993) Annu. Rep. NMR Spectrosc., 25, 1–480.
WüthrichK. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.
ZhouN.E., ZhuB.-Y., SykesB.D. and HodgesR.S. (1992) J. Am. Chem. Soc., 114, 4320–4326.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wishart, D.S., Bigam, C.G., Holm, A. et al. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5, 67–81 (1995). https://doi.org/10.1007/BF00227471
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00227471