[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

In this study we report on the 1H, 13C and 15N NMR chemical shifts for the random coil state and nearest-neighbor sequence effects measured from the protected linear hexapeptide Gly-Gly-X-Y-Gly-Gly (where X and Y are any of the 20 common amino acids). We present data for a set of 40 peptides (of the possible 400) including Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly, measured under identical aqueous conditions. Because all spectra were collected under identical experimental conditions, the data from the Gly-Gly-X-Ala-Gly-Gly series provide a complete and internally consistent set of 1H, 13C and 15N random coil chemical shifts for all 20 common amino acids. In addition, studies were also conducted into nearest-neighbor effects on the random coil shift arising from a variety of X and Y positional substitutions. Comparisons between the chemical shift measurements obtained from Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly reveal significant systematic shift differences arising from the presence of proline in the peptide sequence. Similarly, measurements of the chemical shift changes occurring for both alanine and proline (i.e., the residues in the Y position) are found to depend strougly on the type of amino acid substituted into the X position. These data lend support to the hypothesis that sequence effects play a significant role in determining peptide and protein chemical shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DIEA:

diisopropylethylamine

DMF:

dimethylformamide

DMSO:

dimethyl sulfoxide

DSS:

2,2-dimethyl-2-silapentane-5-sulfonic acid

HMQC:

heteronuclear multiple-quantum coherence

HOBt:

N-hydroxybenzotriazole

MBHA:

4-methylbenzyhydrylamine

NOE:

nuclear Overhauser effect

TBTU:

2-(benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate

TFE:

trifluoroethanol

TMS:

tetramethylsilane

TOCSY:

total correlation spectroscopy

TSP:

3-(trimethylsilyl)propionate, sodium salt

References

  • BaxA. and SubramanianJ. (1986) J. Magn. Reson., 67, 565–570.

    Google Scholar 

  • BraunschweilerL. and ErnstR.R. (1983) J. Magn. Reson., 53, 521–528.

    Google Scholar 

  • BundiA. and WüthrichK. (1979a) Biopolymers, 18, 285–297.

    Google Scholar 

  • BundiA. and WüthrichK. (1979b) Biopolymers, 18, 299–311.

    Google Scholar 

  • DeDiosA.C., PearsonJ.G. and OldfieldE. (1993a) Science, 260, 1491–1495.

    ADS  Google Scholar 

  • DeDiosA.C., PearsonJ.R. and OldfieldE. (1993b) J. Am. Chem. Soc., 115, 9768–9773.

    Google Scholar 

  • DelgarnoD.C., LevineB.A. and WilliamsR.J.P. (1983) Biosci. Rep., 3, 443–452.

    Google Scholar 

  • DeMarcoA. (1977) J. Magn. Reson., 26, 527–528.

    Google Scholar 

  • DysonH.J., RanceM., HoughtenR.A., LernerR.A. and WrightP.E. (1988) J. Mol. Biol., 201, 161–200.

    Google Scholar 

  • DysonH.J. and WrightP.E. (1991) Annu. Rev. Biophys. Biophys. Chem., 20, 519–538.

    Article  Google Scholar 

  • EvansP.A., ToppingK.D., WoolfsonD.N. and DobsonC.M. (1991) Protein Struct. Funct. Genet., 9, 248–266.

    Google Scholar 

  • GippertG.P., YipP.F., WrightP.E. and CaseD.A. (1990) Biochem. Pharmacol., 40, 15–22.

    Article  Google Scholar 

  • GlushkaJ., LeeM., CoffinS. and CowburnD. (1989) J. Am. Chem. Soc., 111, 7716–7722.

    Article  Google Scholar 

  • GlushkaJ., LeeM., CoffinS. and CowburnD. (1990) J. Am. Chem. Soc., 112, 2843.

    Article  Google Scholar 

  • GrathwohlC. and WüthrichK. (1974) J. Magn. Reson., 13, 217–225.

    Google Scholar 

  • GrassK.-H. and KalbitzerH.R. (1988) J. Magn. Reson., 76, 87–99.

    Google Scholar 

  • HerranzJ., GonzalezC., RicoM., NietoJ.L. SantoroJ., JimenezM.A., BruixM., NeiraJ.L. and BlancoF.J. (1992) Magn. Reson. Chem., 30, 1012–1018.

    Article  Google Scholar 

  • HowarthO.W. (1978) Prog. NMR Spectrosc., 12, 1–40.

    Google Scholar 

  • JimenezM.A., BlancoF.J., RicoM., HerranzJ., SantoroJ. and NietoJ.L. (1992) Eur. J. Biochem., 207, 39–49.

    Article  Google Scholar 

  • KeimP., VignaR.A., MarshallR.C. and GurdF.R.N. (1973a) J. Biol. Chem., 248, 6104–6113.

    Google Scholar 

  • KeimP., VignaR.A., MorrowJ.S., MarshallR.C. and GurdF.R.N. (1973b) J. Biol. Chem., 248, 7811–7818.

    Google Scholar 

  • KeimP., VignaR.A., MorrowA.M., MarshallR.C. and GurdF.R.N. (1974) J. Biol. Chem., 249, 4149–4156.

    Google Scholar 

  • KricheldorfH.R. (1981) Org. Magn. Reson., 15, 162–177.

    Article  Google Scholar 

  • LiveD.H., DavisD.G., AgostaW.C. and CowburnD. (1984) J. Am. Chem. Soc., 106, 1939–1943.

    Google Scholar 

  • MassonA. and WüthrichK. (1973) FEBS lett., 31, 114–118.

    Article  Google Scholar 

  • MerutkaG., DysonH.J. and WrightP.E. (1995) J. Biomol. NMR, 5, 14–24.

    Google Scholar 

  • NeriD., WiderG. and WüthrichK. (1992) Proc. Natl. Acad. Sci. USA, 89, 4397–4401.

    ADS  Google Scholar 

  • ÖsapayK. and CaseD.A. (1994) J. Am. Chem. Soc., 113, 9436–9444.

    Google Scholar 

  • ÖsapayK. and CaseD.A. (1994) J. Biomol. NMR, 4, 215–230.

    Article  Google Scholar 

  • PastoreA. and SaudekV. (1990) J. Magn. Reson., 90, 165–176.

    Google Scholar 

  • ReilyM.D., ThanabalV. and OmecinskyD.O. (1992) J. Am. Chem. Soc., 114, 6251–6252.

    Article  Google Scholar 

  • RicharzR. and WüthrichK. (1978) Biopolymers, 17, 2133–2141.

    Article  Google Scholar 

  • SaitoH. (1986) Magn. Reson. Chem., 24, 835–852.

    Google Scholar 

  • SperaS. and BaxA. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Article  Google Scholar 

  • SrinivasanP.R. and LichterR.L. (1977) J. Magn. Reson., 28, 227–234.

    Google Scholar 

  • StatesD.J., HaberkornR.A. and RubenD.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • SzilagyiL. and JardetzkyO. (1989) J. Magn. Reson. 83, 441–449.

    Google Scholar 

  • ThanabalV., OmecinskyD.O., ReilyM.D. and CodyW.L. (1994) J. Biomol. NMR, 4, 47–59.

    Article  Google Scholar 

  • TorchiaD.A., LyerlaJ.R. and QuattroneA.J. (1975) Biochemistry, 14, 887–892.

    Article  Google Scholar 

  • WilliamsonM.P. (1990) Biopolymers, 29, 1423–1431.

    Article  Google Scholar 

  • WilliamsonM.P., AsakuraT., NakamuraE. and DemuraM. (1992) J. Biomol. NMR, 2, 83–98.

    Article  Google Scholar 

  • WilmotC.M. and ThorntonJ.M. (1988) J. Mol. Biol., 203, 221–232.

    Article  Google Scholar 

  • Wishart, D.S. (1991) Ph.D. Thesis, Yale University, New Haven, CT.

  • WishartD.S., SykesB.D. and RichardsF.M. (1991a) FEBS Lett., 193, 72–80.

    Google Scholar 

  • WishartD.S., SykesB.D. and RichardsF.M. (1991b) J. Mol. Biol., 222, 311–333.

    Article  Google Scholar 

  • WishartD.S., SykesB.D. and RichardsF.M. (1992) Biochemistry, 31, 1647–1651.

    Article  Google Scholar 

  • WishartD.S. and SykesB.D. (1994a) J. Biomol. NMR, 4, 171–180.

    Article  Google Scholar 

  • WishartD.S. and SykesB.D. (1994b) Methods Enzymol., 239, 363–392.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Yao, J., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995) J. Biomol. NMR, submitted for publication.

  • WitanowskiM., StefaniukL. and WebbG.A. (1993) Annu. Rep. NMR Spectrosc., 25, 1–480.

    Google Scholar 

  • WüthrichK. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • ZhouN.E., ZhuB.-Y., SykesB.D. and HodgesR.S. (1992) J. Am. Chem. Soc., 114, 4320–4326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wishart, D.S., Bigam, C.G., Holm, A. et al. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5, 67–81 (1995). https://doi.org/10.1007/BF00227471

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227471

Keywords