[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recent Advances in Opinion Modeling: Control and Social Influence

  • Chapter
  • First Online:
Active Particles, Volume 1

Abstract

We survey some recent developments on the mathematical modeling of opinion dynamics. After an introduction on opinion modeling through interacting multi-agent systems described by partial differential equations of kinetic type, we focus our attention on two major advancements: optimal control of opinion formation and influence of additional social aspects, like conviction and number of connections in social networks, which modify the agents’ role in the opinion exchange process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Acemoglu, O. Asuman. Opinion dynamics and learning in social networks. Dynamic Games and Applications, 1, 3–49, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Albert, A.-L. Barabási. Statistical mechanics of complex networks. Reviews of modern physics, 74(1): 1–47, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Albi, M. Bongini, E. Cristiani, D. Kalise. Invisible control of self-organizing agents leaving unknown environments. SIAM Journal on Applied Mathematics, to appear.

    Google Scholar 

  4. G. Albi, L. Pareschi. Modeling of self-organized systems interacting with a few individuals: from microscopic to macroscopic dynamics. Applied Mathematics Letters, 26: 397–401, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Albi, L. Pareschi. Binary interaction algorithm for the simulation of flocking and swarming dynamics. SIAM Journal on Multiscale Modeling and Simulations, 11(1), 1–29, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Albi, M. Herty, L. Pareschi. Kinetic description of optimal control problems and applications to opinion consensus. Communications in Mathematical Sciences, 13(6): 1407–1429, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Albi, L. Pareschi, M. Zanella. Boltzmann-type control of opinion consensus through leaders. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028): 20140138, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Albi, L. Pareschi, M. Zanella. Uncertainty quantification in control problems for flocking models. Mathematical Problems in Engineering, 2015, 14 pp., 2015.

    Google Scholar 

  9. G. Albi, L. Pareschi, M. Zanella. On the optimal control of opinion dynamics on evolving networks. IFIP TC7 2015 Proceedings, to appear Kinetic and Related Models, 10(1): 1–32, 2017.

    Google Scholar 

  10. G. Albi, L. Pareschi, M. Zanella. Opinion dynamics over complex networks: kinetic modeling and numerical methods. To appear in Kinetic and related models, 2016.

    Google Scholar 

  11. G. Aletti, G Naldi, G. Toscani. First-order continuous models of opinion formation. SIAM Journal on Applied Mathematics, 67(3): 837–853, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. A. N. Amaral, A. Scala, M. Bathélemy, H.E. Stanley. Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America, 97(21): 11149–11152, 2000.

    Article  Google Scholar 

  13. D. Armbruster, C. Ringhofer. Thermalized kinetic and fluid models for re-entrant supply chains. Multiscale Modeling & Simulation, 3(4): 782–800, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  14. A.-L. Barabási, R. Albert. Emergence of scaling in random networks. Science, 286(5439): 509–512, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  15. A.-L. Barabási, R. Albert, H. Jeong. Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications, 272(1): 173–187, 1999.

    Article  Google Scholar 

  16. N. Bellomo, G. Ajmone Marsan, A. Tosin. Complex Systems and Society. Modeling and Simulation. SpringerBriefs in Mathematics, Springer, 2013.

    Google Scholar 

  17. N. Bellomo, J. Soler. On the mathematical theory of the dynamics of swarms viewed as complex systems. Mathematical Models and Methods in Applied Sciences, 22(01): 1140006, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Ben-Naim. Opinion dynamics: rise and fall of political parties. Europhysics Letters, 69(5): 671, 2005.

    Article  Google Scholar 

  19. E. Ben-Naim, P. L. Krapivski, S. Redner. Bifurcations and patterns in compromise processes. Physica D: Nonlinear Phenomena, 183(3): 190–204, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Ben-Naim, P. L. Krapivski, R. Vazquez, S. Redner. Unity and discord in opinion dynamics. Physica A, 330(1–2): 99-106, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Bensoussan, J. Frehse, P. Yam. Mean field games and mean field type control theory. SpringerBriefs in Mathematics, New York, NY: Springer, 2013.

    Book  MATH  Google Scholar 

  22. M. L. Bertotti, M. Delitala. On a discrete generalized kinetic approach for modeling persuader’s influence in opinion formation processes. Mathematical and Computer Modeling, 48(7–8): 1107–1121, 2008.

    Article  MATH  Google Scholar 

  23. S. Biswas. Mean-field solutions of kinetic-exchange opinion models. Physical Review E, 84(5), 056105, 2011.

    Article  Google Scholar 

  24. M. Bongini, M. Fornasier, F. Rossi, F. Solombrino. Mean-Field Pontryagin Maximum Principle, preprint, 2015.

    Google Scholar 

  25. C. M. Bordogna, E. V. Albano. Dynamic behavior of a social model for opinion formation. Physical Review E, 76(6): 061125, 2007.

    Article  Google Scholar 

  26. A. Borzì, S. Wongkaew. Modeling and control through leadership of a refined flocking system. Mathematical Models and Methods in Applied Sciences, 25(2): 255–282, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Boudin, F. Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinetic and Related Models: 433–449, 2009.

    Google Scholar 

  28. L. Boudin, F. Salvarani. A kinetic approach to the study of opinion formation. ESAIM: Mathematical Modeling and Numerical Analysis, 43(3): 507–522, 2009.

    MathSciNet  MATH  Google Scholar 

  29. L. Boudin, F. Salvarani. Conciliatory and contradictory dynamics in opinion formation. Physica A: Statistical Mechanics and its Applications, 391(22): 5672–5684, 2012.

    Article  Google Scholar 

  30. L. Boudin, R. Monaco, F. Salvarani. Kinetic model for multidimensional opinion formation. Physical Review E, 81(3): 036109, 2010.

    Article  MathSciNet  Google Scholar 

  31. C. Brugna, G. Toscani. Kinetic models of opinion formation in the presence of personal conviction. Physical Review E, 92, 052818, 2015.

    Article  Google Scholar 

  32. C. Buet, S. Dellacherie. On the Chang and Cooper numerical scheme applied to a linear Fokker-Planck equation. Communications in Mathematical Sciences, 8(4): 1079–1090, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Buet, S. Cordier, V. Dos Santos. A conservative and entropy scheme for a simplified model of granular media. Transport Theory and Statistical Physics, 33(2): 125–155, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram. Mean-field games with nonlinear mobilities in pedestrian dynamics. Discrete and Continuous Dynamical Systems - B, 19(5): 1311–1333, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  35. E. F. Camacho, C. Bordons. Model Predictive Control, Springer–Verlag London, 2004.

    MATH  Google Scholar 

  36. M. Caponigro, M. Fornasier, B. Piccoli, E. Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control and Related Fields, 3(4): 447–466, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Castellano, S. Fortunato, V. Loreto. Statistical physics of social dynamics. Review of Modern Physics, 81(2): 591–646, 2009.

    Article  Google Scholar 

  38. A. Chakraborti, B. K.  Chakrabarti. Statistical mechanics of money: how saving propensity affects its distribution. European Physical Journal B, 17: 167-170, 2000.

    Article  Google Scholar 

  39. J. S. Chang, G. Cooper. A practical difference scheme for Fokker-Planck equation. Journal of Computational Physics, 6: 1–16, 1970.

    Article  MATH  Google Scholar 

  40. H. Choi, M. Hinze, K. Kunisch. Instantaneous control of backward-facing step flows. Applied Numerical Mathematics, 31(2): 133–158, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. M. Colombo, N. Pogodaev. Confinement strategies in a model for the interaction between individuals and a continuum. SIAM Journal on Applied Dynamical Systems, 11(2): 741–770, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. M. Colombo, N. Pogodaev. On the control of moving sets: positive and negative confinement results. SIAM Journal on Control and Optimization, 51(1): 380–401, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Comincioli, L. Della Croce, G. Toscani. A Boltzmann-like equation for choice formation. Kinetic and Related Models, 2(1): 135–149, 2009.

    Google Scholar 

  44. S. Cordier, L. Pareschi, G. Toscani. On a kinetic model for a simple market economy. Journal of Statistical Physics, 120(1–2): 253–277, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  45. I. D. Couzin, J. Krause, N. R. Franks, S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 433(7025): 513–516, 2005.

    Article  Google Scholar 

  46. E. Cristiani, B. Piccoli, A. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Modeling & Simulation, 9(1): 155–182, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  47. N. Crokidakis. Role of noise and agents’ convictions on opinion spreading in a three-state voter-like model. Journal of Statistical Mechanics: Theory and Experiment, 07: P07008, 2013.

    Article  Google Scholar 

  48. N. Crokidakis, C. Anteneodo. Role of conviction in nonequilibrium models of opinion formation. Physical Review E: 86(6): 061127, 2012.

    Article  Google Scholar 

  49. F. Cucker, S. Smale. Emergent behavior in flocks. IEEE Transaction on Automatic Control, 52(5): 852–862, 2007.

    Article  MathSciNet  Google Scholar 

  50. A. Das, S. Gollapudi, K. Munagala. Modeling opinion dynamics in social networks, Proceedings of the 7th ACM international conference on Web search and data mining, ACM New York, 403–412, 2014.

    Google Scholar 

  51. G. Deffuant, F. Amblard, G. Weisbuch, T. Faure. How can extremism prevail? A study based on the relative agreement interaction model. Journal of Artificial Societies and Social Simulation, 5(4), 2002.

    Google Scholar 

  52. P. Degond, M. Herty, J-G Liu, Meanfield games and model predictive control. arXiv preprint, 2014. arXiv:1412.7517

  53. P. Degond, S. Motsch. Continuum limit of self-driven particles with orientation interaction. Mathematical Models and Methods in Applied Sciences, 18: 1193–1215, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  54. P. Degond, J.-G. Liu, S. Motsch, V. Panferov. Hydrodynamic models of self-organized dynamics: derivation and existence theory. Methods and Applications of Analysis, 20(2): 89–114, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  55. P. Degond, J.-G. Liu, C. Ringhofer. Large-scale dynamics of mean-field games driven by local Nash equilibria. Journal of Nonlinear Science, 24(1): 93–115, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Dolfin, L. Miroslav. Modeling opinion dynamics: how the network enhances consensus. Networks & Heterogeneous Media, 10(4): 877-896, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  57. M. D‘Orsogna, Y. L. Chuang, A. Bertozzi, L. Chayes. Self-propelled particles with soft-core interactions. Patterns, stability and collapse. Physical Review Letters, 96: 104302, 2006.

    Google Scholar 

  58. B. Düring, M.-T. Wolfram. Opinion dynamics: inhomogeneous Boltzmann-type equations modeling opinion leadership and political segregation. Proceedings of the Royal Society of London A, 471(2182):20150345, 2015.

    Article  Google Scholar 

  59. B. Düring, P. A. Markowich, J.-F. Pietschmann, M.-T. Wolfram. Boltzmann and Fokker-Planck equations modeling opinion formation in the presence of strong leaders. Proceedings of the Royal Society of London A, 465(2112): 3687–3708, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Fornasier, F. Solombrino. Mean-field optimal control. ESAIM: Control, Optimisation and Calculus of Variations, 20(4): 1123–1152, 2014.

    Google Scholar 

  61. M. Fornasier, J. Haskovec, G. Toscani. Fluid dynamic description of flocking via Povzner–Boltzmann equation. Physica D: Nonlinear Phenomena, 240(1): 21–31, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Fornasier, B. Piccoli, F. Rossi. Mean-field sparse optimal control, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028): 20130400, 21, 2014.

    Google Scholar 

  63. G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani. The grazing collision limit of the inelastic Kac model around a Lévy-type equilibrium. SIAM Journal of Mathematical Analysis, 44: 827–850, 2012.

    Article  MATH  Google Scholar 

  64. S. Galam, J. D. Zucker. From individual choice to group decision-making. Physica A: Statistical Mechanics and its Applications, 287(3–4): 644–659, 2000.

    Article  MathSciNet  Google Scholar 

  65. S. Galam, Y. Gefen,Y. Shapir. Sociophysics: a new approach of sociological collective behavior. Journal of Mathematical Sociology, 9: 1–13, 1982.

    Article  MATH  Google Scholar 

  66. J. Gómez-Serrano, C. Graham, J.-Y. Le Boudec. The bounded confidence model of opinion dynamics. Mathematical Models and Methods in Applied Sicneces, 22(02): 1150007, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Y. Ha, E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic and Related Models, 1: 415–435, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  68. D. Helbing, S. Lämmer, J.-P. Lebacque. Self-organized control of irregular or perturbed network traffic. Optimal Control and dynamic games, Springer US: 239–274, 2005.

    Google Scholar 

  69. M. Herty, C. Ringhofer. Feedback controls for continuous priority models in supply chain management. Computational Methods in Applied Mathematics, 11(2): 206–213, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Herty, C. Ringhofer. Averaged kinetic models for flows on unstructured networks. Kinetic and Related Models, 4: 1081–1096, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Herty, M. Zanella. Performance bounds for the mean–field limit of constrained dynamics. Discrete and Continuous Dynamical Systems A, 37(4): 2023–2043, 2017.

    Google Scholar 

  72. R. Hegselmann, U. Krause. Opinion dynamics and bounded confidence, models, analysis and simulation. Journal of Artificial Societies and Social Simulation, 5(3), 2002.

    Google Scholar 

  73. M. Kristic, I. Kanellakopoulos, P. Kokotovic. Nonlinear and Adaptive Control Design, John Wiley and Sons Inc., New York, 1995.

    Google Scholar 

  74. M. Lallouache, A. Chakrabarti, A. Chakraborti, B. K. Chakrabarti. Opinion formation in the kinetic exchange models: spontaneous symmetry breaking transition. Physical Review E, 82: 056112, 2010.

    Article  Google Scholar 

  75. P.F. Lazarsfeld, B.R. Berelson, H. Gaudet. The people’s choice: how the voter makes up his mind in a presidential campaign. New York, NY: Duell, Sloan & Pierce 1944.

    Google Scholar 

  76. E. W. Larsen, C. D. Levermore, G. C. Pomraning, J. G. Sanderson. Discretization methods for one-dimensional Fokker-Planck operators. Journal of Computational Physics, 61: 359–390, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  77. J.-M. Lasry, P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1): 229–260, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  78. T. Lux, M. Marchesi. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397(6719): 498–500, 1999.

    Article  Google Scholar 

  79. D. Maldarella, L. Pareschi. Kinetic models for socio-economic dynamicsof speculative markets. Physica A: Statistical Mechanics and its Applications, 391(3): 715–730, 2012.

    Article  Google Scholar 

  80. D.Q. Mayne, H. Michalska. Receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control, 35(7): 814–824, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  81. D.Q. Mayne, J.B.  Rawlings, C.V. Rao, P.O.M. Scokaert. Constrained model predictive control: stability and optimality. Automatica, 36(6): 789–814, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  82. H. Michalska, D.Q. Mayne. Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 38(11): 1623–1633, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Mohammadi, A. Borzì. Analysis of the Chang-Cooper discretization scheme for a class of Fokker-Planck equations. Journal of Numerical Mathematics, 23(3): 271–288, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  84. S. Motsch, E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Review, 56(4): 577–621, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  85. C. Mudde. Populist radical right parties in Europe. Cambridge, UK: Cambridge University Press, 2007.

    Book  Google Scholar 

  86. G. Naldi, L. Pareschi, G. Toscani. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhauser, Boston, 2010.

    Book  MATH  Google Scholar 

  87. M.E.J. Newman. The structure and function on complex networks. SIAM Review, 45(2): 167–256, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  88. L. Pareschi, G. Russo. An introduction to Monte Carlo methods for the Boltzmann equation. ESAIM: Proceedings, EDP Sciences. Vol. 10: 35–75, 2001.

    Google Scholar 

  89. L. Pareschi, G. Toscani. Interacting Multiagent Systems. Kinetic Equations and Monte Carlo Methods. Oxford University Press, 2013.

    MATH  Google Scholar 

  90. L. Pareschi, G. Toscani. Wealth distribution and collective knowledge: a Boltzmann approach. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028): 20130396, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  91. L. Pareschi, P. Vellucci, M. Zanella. Kinetic models of collective decision-making in the presence of equality bias. Physica A: Statistical Mechanics and its Application, 467: 201-217, 2017.

    Article  MathSciNet  Google Scholar 

  92. S. Patterson, B. Bamieh. Interaction-driven opinion dynamics in online social networks, Proceedings of the First Workshop on Social Media Analytics, ACM New York, 98–110, 2010

    Google Scholar 

  93. H. Risken, The Fokker-Planck equation, vol. 18 of Springer Series in Synergetics, Springer-Verlag, Berlin, second ed., 1989. Methods of solution and applications.

    Google Scholar 

  94. P. Sen. Phase transitions in a two-parameter model of opinion dynamics with random kinetic exchanges. Physical Review E, 83(1): 016108, 2011.

    Article  Google Scholar 

  95. E.D. Sontag. Mathematical control theory: deterministic finite dimensional systems, Springer Science, Vol. 6, Second Edition, 1998.

    Google Scholar 

  96. S.H. Strogatz. Exploring complex networks. Nature, 410(6825): 268–276, 2001.

    Article  Google Scholar 

  97. K. Sznajd–Weron, J. Sznajd. Opinion evolution in closed community. International Journal of Modern Physics C, 11(6): 1157–1165, 2000.

    Article  MATH  Google Scholar 

  98. G. Toscani. Kinetic models of opinion formation. Communications in Mathematical Sciences, 4(3): 481–496, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  99. F. Vazquez, P. L. Krapivsky, S. Redner. Constrained opinion dynamics: freezing and slow evolution. Journal of Physics A: Mathematical and General, 36(3): L61, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  100. T. Vicsek, A. Zafeiris. Collective motion. Physics Reports, 517(3): 71–140, 2012.

    Article  Google Scholar 

  101. C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Archive for Rational Mechanics and Analysis, 143(3): 273–307, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  102. D.J. Watts, S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393: 440–442, 1998.

    Article  Google Scholar 

  103. W. Weidlich. Sociodynamics: a Systematic Approach to Mathematical Modeling in the Social Sciences, Harwood Academic Publishers, Amsterdam, 2000.

    MATH  Google Scholar 

  104. G. Weisbuch, G. Deffuant, F. Amblard. Persuasion dynamics. Physica A: Statistical Mechanics and its Applications, 353: 555–575, 2005.

    Article  Google Scholar 

  105. Y.-B. Xie, T. Zhou, B.-H. Wang. Scale-free networks without growth. Physica A: Statistical Mechanics and its Applications, 387: 1683–1688, 2008.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been written within the activities of the National Groups of Scientific Computing (GNCS) and Mathematical Physics (GNFM) of the National Institute of High Mathematics of Italy (INDAM). GA acknowledges the ERC-Starting Grant project High-Dimensional Sparse Optimal Control (HDSPCONTR). GT acknowledges the partial support of the MIUR project Optimal mass transportation, geometrical and functional inequalities with applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Toscani .

Editor information

Editors and Affiliations

Appendix: Numerical Simulation Methods

Appendix: Numerical Simulation Methods

In this short appendix we sketch briefly some particular numerical technique used to produce the various simulation results presented in the manuscript. We omit the description of the Monte Carlo simulation approach for the Boltzmann equation describing the opinion exchange dynamics addressing the interested reader to [89]. For the development of Monte Carlo methods that works in the Fokker-Planck regime we refer to [5].

We first summarize the Monte Carlo approach used to deal with the evolution of the social network and then the steady state preserving finite-difference approach used for the mean-field models. More details can be found in [10].

1.1 Monte Carlo Algorithm for the Evolution of the Network

The evolution of the network is given by

$$\begin{aligned}{\left\{ \begin{array}{ll} \dfrac{d}{dt} f(w,c,t) + \mathscr {N}[f(w,c,t)]=0, \\ f(w,c,0)=f_0(w,c). \end{array}\right. }\end{aligned}$$

Let \(f^n = f(w,c,t^n)\) the empirical density function for the density of agents at time \(t^n\) with opinion w and connections c. For any given opinion w we approximate the solution of the above problem at time \(t^{n+1}\) by

$$\begin{aligned} \begin{aligned} f^{n+1}(w,c) =&\left( 1-\varDelta t\dfrac{{{V_r}}(c+\beta )}{\gamma ^n+\beta }-\varDelta t\dfrac{ {{V_a}}(c+\alpha )}{\gamma ^n+\alpha }\right) f^n(w,c)\\&+\varDelta t \dfrac{{{V_r}}(c+\beta )}{\gamma ^n+\beta }f^n(w,c-1)+\varDelta t\dfrac{ {{V_a}}(c+\alpha )}{\gamma ^n+\alpha }f^n(w,c+1), \end{aligned}\end{aligned}$$

with boundary conditions

$$\begin{aligned}\begin{aligned} f^n(w,0)&= \left( 1-\varDelta t\dfrac{ {{V_a}}(c+\alpha )}{\gamma ^n+\alpha }\right) f^n(w,0)+\varDelta t\dfrac{ {{V_a}}(c+\alpha )}{\gamma ^n+\alpha }f^n(w,1), \\ f^n(w,c_{\text {max}})&= \left( 1-\varDelta t\dfrac{{{V_r}}(c+\beta )}{\gamma ^n+\beta }\right) f^n(w,c_{\text {max}})+\varDelta t \dfrac{{{V_r}}(c_{\text {max}}+\beta )}{\gamma ^n+\beta }f^n(w,c_{\text {max}}-1), \end{aligned}\end{aligned}$$

and temporal discretization such that

$$\begin{aligned} \varDelta t\le \min \left\{ \dfrac{\gamma ^n+\beta }{{{V_r}}(c_{\text {max}}+\beta )},\dfrac{\gamma ^n+\alpha }{{{V_a}}(c_{\text {max}}+\alpha )} \right\} . \end{aligned}$$
(A3)

The algorithm to simulate the above equation reads as follows

Algorithm 1

 

  1. 1.

    Sample \((w^0_i,c^0_i)\), with \(i=1,\ldots ,N_s\), from the distribution \(f^{0}(w,c)\).

  2. 2.

    for \(n=0\) to \(n_{tot}-1\)

    1. a.

      Compute \(\gamma ^n =\frac{1}{N_s} \sum _{j=1}^{N_s}c^n_j\);

    2. b.

      Fix \(\varDelta t\) such that condition (A3) is satisfied.

    3. c.

      for \(k=1\) to \(N_s\)

      1. i.

        Compute the following probabilities rates

        $$\begin{aligned} p_k^{(a)} =\frac{\varDelta t V_a(c_k^n+\alpha )}{\gamma ^n+\alpha },\qquad p_k^{(r)} = \frac{\varDelta t V_r(c_k^n+\beta )}{\gamma ^n+\beta }, \end{aligned}$$
      2. ii.

        Set \(c^*_k =c_k^n\).

      3. iii.

        if    \(0 \le c_k^*\le c_{\text {max}}-1\),

           with probability \(p_k^{(a)}\) add a connection: \(c_k^* = c_k^* +1\);

      4. iv.

        if    \(1 \le c_k^*\le c_{\text {max}}\),

           with probability \(p_k^{(r)}\) remove a connection: \(c_k^* = c_k^* -1\);

      • end for

    4. d.

      set \(c^{n+1}_i = c^*_i\), for all \(i= 1,\ldots , N_s\).

    • end for

1.2 Chang-Cooper Type Numerical Schemes

In the domain \((w,c)\in I\times {\mathscr {C}}\) we consider the Fokker-Planck system

$$\begin{aligned} \dfrac{\partial }{\partial t}f(w,c,t)+\mathscr {N}\left[ f(w,c,t)\right] =\dfrac{\partial }{\partial w}\mathscr {F}[f], \end{aligned}$$
(A4)

with zero flux boundary condition on w, initial data \(f(w,c,0)=f_0(w,c)\) and

$$\begin{aligned} \mathscr {F}[f] = \left( \mathscr {P}[f] + \sigma ^2 D'(w,c)D(w,c)\right) f(w,c,t)+\dfrac{\sigma ^2}{2}D(w,c)^2 \dfrac{\partial }{\partial w}f(w,c,t), \end{aligned}$$

where \(\mathscr {P}[f]\) is given by (101). Let us introduce a uniform grid \(w_{i}=-1+i\varDelta w\), \(i=0,\ldots ,N\) with \(\varDelta w = 2/N\), we denote by \(w_{i \pm 1/2}=w_i \pm \varDelta w/2\) and define

$$ f_{i}(c,t)=\frac{1}{\varDelta w}\int _{w_{i+1/2}}^{w_{i-1/2}} f(w,c,t)\,dw. $$

Integrating equation (A4) yields

$$\begin{aligned}\begin{aligned} \dfrac{\partial }{\partial t}f_{i}(c,t)+\mathscr {N}\left[ f_{i}(c,t)\right] =\frac{\mathscr {F}_{i+1/2}[f]-\mathscr {F}_{i-1/2} [f]}{\varDelta w}, \end{aligned}\end{aligned}$$

where \(\mathscr {F}_{i}[f]\) is the flux function characterizing the numerical discretization. We assume the Chang-Cooper flux function

$$\begin{aligned}\nonumber \begin{aligned} \mathscr {F}_{i+1/2}[f]=&\left( (1-\delta _{i+1/2})(\mathscr {P}[f_{i+1/2}] + \sigma ^2 D'_{i+1/2}D_{i+1/2})+\frac{\sigma ^2}{2\varDelta w}D^2_{i+1/2} \right) f_{i+1}\\&+\left( \delta _{i+1/2} (\mathscr {P}[f_{i+1/2}] + \sigma ^2 D'_{i+1/2}D_{i+1/2})-\frac{\sigma ^2}{2\varDelta w} D^2_{i+1/2} \right) f_{i}, \end{aligned} \end{aligned}$$

where \(D_{i+1/2}=D(w_{i+1/2},c)\) and \(D'_{i+1/2}=D'(w_{i+1/2},c)\). The weights \(\delta _{i+1/2}\) have to be chosen in such a way that a steady state solution is preserved. Moreover this choice permits also to preserve nonnegativity of the numerical density. The choice

$$\begin{aligned} \delta _{i+1/2}=\frac{1}{\lambda _{i+1/2}}+\frac{1}{1-\exp (\lambda _{i+1/2})}, \end{aligned}$$
(A5)

where

$$\begin{aligned}\nonumber \lambda _{i+1/2}=\frac{2\varDelta w}{\sigma ^2}\frac{1}{D^2_{i+1/2}}\left( \mathscr {P}[f_{i+1/2}] + \sigma ^2 D'_{i+1/2}D_{i+1/2}\right) , \end{aligned}$$

leads to a second order Chang-Cooper nonlinear approximation of the original problem. Note that here, at variance with the standard Chang-Cooper scheme [39], the weights depend on the solution itself as in [76]. Thus we have a nonlinear scheme which preserves the steady state with second order accuracy. In particular, by construction, the weight in (A5) are nonnegative functions with values in [0, 1].

Higher order accuracy of the steady state can be recovered using a more general numerical flux [10].

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Albi, G., Pareschi, L., Toscani, G., Zanella, M. (2017). Recent Advances in Opinion Modeling: Control and Social Influence. In: Bellomo, N., Degond, P., Tadmor, E. (eds) Active Particles, Volume 1 . Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-49996-3_2

Download citation

Publish with us

Policies and ethics