Abstract
We survey some recent developments on the mathematical modeling of opinion dynamics. After an introduction on opinion modeling through interacting multi-agent systems described by partial differential equations of kinetic type, we focus our attention on two major advancements: optimal control of opinion formation and influence of additional social aspects, like conviction and number of connections in social networks, which modify the agents’ role in the opinion exchange process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
D. Acemoglu, O. Asuman. Opinion dynamics and learning in social networks. Dynamic Games and Applications, 1, 3–49, 2011.
R. Albert, A.-L. Barabási. Statistical mechanics of complex networks. Reviews of modern physics, 74(1): 1–47, 2002.
G. Albi, M. Bongini, E. Cristiani, D. Kalise. Invisible control of self-organizing agents leaving unknown environments. SIAM Journal on Applied Mathematics, to appear.
G. Albi, L. Pareschi. Modeling of self-organized systems interacting with a few individuals: from microscopic to macroscopic dynamics. Applied Mathematics Letters, 26: 397–401, 2013.
G. Albi, L. Pareschi. Binary interaction algorithm for the simulation of flocking and swarming dynamics. SIAM Journal on Multiscale Modeling and Simulations, 11(1), 1–29, 2013.
G. Albi, M. Herty, L. Pareschi. Kinetic description of optimal control problems and applications to opinion consensus. Communications in Mathematical Sciences, 13(6): 1407–1429, 2015.
G. Albi, L. Pareschi, M. Zanella. Boltzmann-type control of opinion consensus through leaders. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028): 20140138, 2014.
G. Albi, L. Pareschi, M. Zanella. Uncertainty quantification in control problems for flocking models. Mathematical Problems in Engineering, 2015, 14 pp., 2015.
G. Albi, L. Pareschi, M. Zanella. On the optimal control of opinion dynamics on evolving networks. IFIP TC7 2015 Proceedings, to appear Kinetic and Related Models, 10(1): 1–32, 2017.
G. Albi, L. Pareschi, M. Zanella. Opinion dynamics over complex networks: kinetic modeling and numerical methods. To appear in Kinetic and related models, 2016.
G. Aletti, G Naldi, G. Toscani. First-order continuous models of opinion formation. SIAM Journal on Applied Mathematics, 67(3): 837–853, 2007.
L. A. N. Amaral, A. Scala, M. Bathélemy, H.E. Stanley. Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America, 97(21): 11149–11152, 2000.
D. Armbruster, C. Ringhofer. Thermalized kinetic and fluid models for re-entrant supply chains. Multiscale Modeling & Simulation, 3(4): 782–800, 2005.
A.-L. Barabási, R. Albert. Emergence of scaling in random networks. Science, 286(5439): 509–512, 1999.
A.-L. Barabási, R. Albert, H. Jeong. Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications, 272(1): 173–187, 1999.
N. Bellomo, G. Ajmone Marsan, A. Tosin. Complex Systems and Society. Modeling and Simulation. SpringerBriefs in Mathematics, Springer, 2013.
N. Bellomo, J. Soler. On the mathematical theory of the dynamics of swarms viewed as complex systems. Mathematical Models and Methods in Applied Sciences, 22(01): 1140006, 2012.
E. Ben-Naim. Opinion dynamics: rise and fall of political parties. Europhysics Letters, 69(5): 671, 2005.
E. Ben-Naim, P. L. Krapivski, S. Redner. Bifurcations and patterns in compromise processes. Physica D: Nonlinear Phenomena, 183(3): 190–204, 2003.
E. Ben-Naim, P. L. Krapivski, R. Vazquez, S. Redner. Unity and discord in opinion dynamics. Physica A, 330(1–2): 99-106, 2003.
A. Bensoussan, J. Frehse, P. Yam. Mean field games and mean field type control theory. SpringerBriefs in Mathematics, New York, NY: Springer, 2013.
M. L. Bertotti, M. Delitala. On a discrete generalized kinetic approach for modeling persuader’s influence in opinion formation processes. Mathematical and Computer Modeling, 48(7–8): 1107–1121, 2008.
S. Biswas. Mean-field solutions of kinetic-exchange opinion models. Physical Review E, 84(5), 056105, 2011.
M. Bongini, M. Fornasier, F. Rossi, F. Solombrino. Mean-Field Pontryagin Maximum Principle, preprint, 2015.
C. M. Bordogna, E. V. Albano. Dynamic behavior of a social model for opinion formation. Physical Review E, 76(6): 061125, 2007.
A. Borzì, S. Wongkaew. Modeling and control through leadership of a refined flocking system. Mathematical Models and Methods in Applied Sciences, 25(2): 255–282, 2015.
L. Boudin, F. Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinetic and Related Models: 433–449, 2009.
L. Boudin, F. Salvarani. A kinetic approach to the study of opinion formation. ESAIM: Mathematical Modeling and Numerical Analysis, 43(3): 507–522, 2009.
L. Boudin, F. Salvarani. Conciliatory and contradictory dynamics in opinion formation. Physica A: Statistical Mechanics and its Applications, 391(22): 5672–5684, 2012.
L. Boudin, R. Monaco, F. Salvarani. Kinetic model for multidimensional opinion formation. Physical Review E, 81(3): 036109, 2010.
C. Brugna, G. Toscani. Kinetic models of opinion formation in the presence of personal conviction. Physical Review E, 92, 052818, 2015.
C. Buet, S. Dellacherie. On the Chang and Cooper numerical scheme applied to a linear Fokker-Planck equation. Communications in Mathematical Sciences, 8(4): 1079–1090, 2010.
C. Buet, S. Cordier, V. Dos Santos. A conservative and entropy scheme for a simplified model of granular media. Transport Theory and Statistical Physics, 33(2): 125–155, 2004.
M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram. Mean-field games with nonlinear mobilities in pedestrian dynamics. Discrete and Continuous Dynamical Systems - B, 19(5): 1311–1333, 2014.
E. F. Camacho, C. Bordons. Model Predictive Control, Springer–Verlag London, 2004.
M. Caponigro, M. Fornasier, B. Piccoli, E. Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control and Related Fields, 3(4): 447–466, 2013.
C. Castellano, S. Fortunato, V. Loreto. Statistical physics of social dynamics. Review of Modern Physics, 81(2): 591–646, 2009.
A. Chakraborti, B. K. Chakrabarti. Statistical mechanics of money: how saving propensity affects its distribution. European Physical Journal B, 17: 167-170, 2000.
J. S. Chang, G. Cooper. A practical difference scheme for Fokker-Planck equation. Journal of Computational Physics, 6: 1–16, 1970.
H. Choi, M. Hinze, K. Kunisch. Instantaneous control of backward-facing step flows. Applied Numerical Mathematics, 31(2): 133–158, 1999.
R. M. Colombo, N. Pogodaev. Confinement strategies in a model for the interaction between individuals and a continuum. SIAM Journal on Applied Dynamical Systems, 11(2): 741–770, 2012.
R. M. Colombo, N. Pogodaev. On the control of moving sets: positive and negative confinement results. SIAM Journal on Control and Optimization, 51(1): 380–401, 2013.
V. Comincioli, L. Della Croce, G. Toscani. A Boltzmann-like equation for choice formation. Kinetic and Related Models, 2(1): 135–149, 2009.
S. Cordier, L. Pareschi, G. Toscani. On a kinetic model for a simple market economy. Journal of Statistical Physics, 120(1–2): 253–277, 2005.
I. D. Couzin, J. Krause, N. R. Franks, S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 433(7025): 513–516, 2005.
E. Cristiani, B. Piccoli, A. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Modeling & Simulation, 9(1): 155–182, 2011.
N. Crokidakis. Role of noise and agents’ convictions on opinion spreading in a three-state voter-like model. Journal of Statistical Mechanics: Theory and Experiment, 07: P07008, 2013.
N. Crokidakis, C. Anteneodo. Role of conviction in nonequilibrium models of opinion formation. Physical Review E: 86(6): 061127, 2012.
F. Cucker, S. Smale. Emergent behavior in flocks. IEEE Transaction on Automatic Control, 52(5): 852–862, 2007.
A. Das, S. Gollapudi, K. Munagala. Modeling opinion dynamics in social networks, Proceedings of the 7th ACM international conference on Web search and data mining, ACM New York, 403–412, 2014.
G. Deffuant, F. Amblard, G. Weisbuch, T. Faure. How can extremism prevail? A study based on the relative agreement interaction model. Journal of Artificial Societies and Social Simulation, 5(4), 2002.
P. Degond, M. Herty, J-G Liu, Meanfield games and model predictive control. arXiv preprint, 2014. arXiv:1412.7517
P. Degond, S. Motsch. Continuum limit of self-driven particles with orientation interaction. Mathematical Models and Methods in Applied Sciences, 18: 1193–1215, 2008.
P. Degond, J.-G. Liu, S. Motsch, V. Panferov. Hydrodynamic models of self-organized dynamics: derivation and existence theory. Methods and Applications of Analysis, 20(2): 89–114, 2013.
P. Degond, J.-G. Liu, C. Ringhofer. Large-scale dynamics of mean-field games driven by local Nash equilibria. Journal of Nonlinear Science, 24(1): 93–115, 2014.
M. Dolfin, L. Miroslav. Modeling opinion dynamics: how the network enhances consensus. Networks & Heterogeneous Media, 10(4): 877-896, 2015.
M. D‘Orsogna, Y. L. Chuang, A. Bertozzi, L. Chayes. Self-propelled particles with soft-core interactions. Patterns, stability and collapse. Physical Review Letters, 96: 104302, 2006.
B. Düring, M.-T. Wolfram. Opinion dynamics: inhomogeneous Boltzmann-type equations modeling opinion leadership and political segregation. Proceedings of the Royal Society of London A, 471(2182):20150345, 2015.
B. Düring, P. A. Markowich, J.-F. Pietschmann, M.-T. Wolfram. Boltzmann and Fokker-Planck equations modeling opinion formation in the presence of strong leaders. Proceedings of the Royal Society of London A, 465(2112): 3687–3708, 2009.
M. Fornasier, F. Solombrino. Mean-field optimal control. ESAIM: Control, Optimisation and Calculus of Variations, 20(4): 1123–1152, 2014.
M. Fornasier, J. Haskovec, G. Toscani. Fluid dynamic description of flocking via Povzner–Boltzmann equation. Physica D: Nonlinear Phenomena, 240(1): 21–31, 2011.
M. Fornasier, B. Piccoli, F. Rossi. Mean-field sparse optimal control, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028): 20130400, 21, 2014.
G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani. The grazing collision limit of the inelastic Kac model around a Lévy-type equilibrium. SIAM Journal of Mathematical Analysis, 44: 827–850, 2012.
S. Galam, J. D. Zucker. From individual choice to group decision-making. Physica A: Statistical Mechanics and its Applications, 287(3–4): 644–659, 2000.
S. Galam, Y. Gefen,Y. Shapir. Sociophysics: a new approach of sociological collective behavior. Journal of Mathematical Sociology, 9: 1–13, 1982.
J. Gómez-Serrano, C. Graham, J.-Y. Le Boudec. The bounded confidence model of opinion dynamics. Mathematical Models and Methods in Applied Sicneces, 22(02): 1150007, 2012.
S. Y. Ha, E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic and Related Models, 1: 415–435, 2008.
D. Helbing, S. Lämmer, J.-P. Lebacque. Self-organized control of irregular or perturbed network traffic. Optimal Control and dynamic games, Springer US: 239–274, 2005.
M. Herty, C. Ringhofer. Feedback controls for continuous priority models in supply chain management. Computational Methods in Applied Mathematics, 11(2): 206–213, 2011.
M. Herty, C. Ringhofer. Averaged kinetic models for flows on unstructured networks. Kinetic and Related Models, 4: 1081–1096, 2011.
M. Herty, M. Zanella. Performance bounds for the mean–field limit of constrained dynamics. Discrete and Continuous Dynamical Systems A, 37(4): 2023–2043, 2017.
R. Hegselmann, U. Krause. Opinion dynamics and bounded confidence, models, analysis and simulation. Journal of Artificial Societies and Social Simulation, 5(3), 2002.
M. Kristic, I. Kanellakopoulos, P. Kokotovic. Nonlinear and Adaptive Control Design, John Wiley and Sons Inc., New York, 1995.
M. Lallouache, A. Chakrabarti, A. Chakraborti, B. K. Chakrabarti. Opinion formation in the kinetic exchange models: spontaneous symmetry breaking transition. Physical Review E, 82: 056112, 2010.
P.F. Lazarsfeld, B.R. Berelson, H. Gaudet. The people’s choice: how the voter makes up his mind in a presidential campaign. New York, NY: Duell, Sloan & Pierce 1944.
E. W. Larsen, C. D. Levermore, G. C. Pomraning, J. G. Sanderson. Discretization methods for one-dimensional Fokker-Planck operators. Journal of Computational Physics, 61: 359–390, 1985.
J.-M. Lasry, P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1): 229–260, 2007.
T. Lux, M. Marchesi. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397(6719): 498–500, 1999.
D. Maldarella, L. Pareschi. Kinetic models for socio-economic dynamicsof speculative markets. Physica A: Statistical Mechanics and its Applications, 391(3): 715–730, 2012.
D.Q. Mayne, H. Michalska. Receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control, 35(7): 814–824, 1990.
D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert. Constrained model predictive control: stability and optimality. Automatica, 36(6): 789–814, 2000.
H. Michalska, D.Q. Mayne. Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 38(11): 1623–1633, 1993.
M. Mohammadi, A. Borzì. Analysis of the Chang-Cooper discretization scheme for a class of Fokker-Planck equations. Journal of Numerical Mathematics, 23(3): 271–288, 2015.
S. Motsch, E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Review, 56(4): 577–621, 2014.
C. Mudde. Populist radical right parties in Europe. Cambridge, UK: Cambridge University Press, 2007.
G. Naldi, L. Pareschi, G. Toscani. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhauser, Boston, 2010.
M.E.J. Newman. The structure and function on complex networks. SIAM Review, 45(2): 167–256, 2003.
L. Pareschi, G. Russo. An introduction to Monte Carlo methods for the Boltzmann equation. ESAIM: Proceedings, EDP Sciences. Vol. 10: 35–75, 2001.
L. Pareschi, G. Toscani. Interacting Multiagent Systems. Kinetic Equations and Monte Carlo Methods. Oxford University Press, 2013.
L. Pareschi, G. Toscani. Wealth distribution and collective knowledge: a Boltzmann approach. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028): 20130396, 2014.
L. Pareschi, P. Vellucci, M. Zanella. Kinetic models of collective decision-making in the presence of equality bias. Physica A: Statistical Mechanics and its Application, 467: 201-217, 2017.
S. Patterson, B. Bamieh. Interaction-driven opinion dynamics in online social networks, Proceedings of the First Workshop on Social Media Analytics, ACM New York, 98–110, 2010
H. Risken, The Fokker-Planck equation, vol. 18 of Springer Series in Synergetics, Springer-Verlag, Berlin, second ed., 1989. Methods of solution and applications.
P. Sen. Phase transitions in a two-parameter model of opinion dynamics with random kinetic exchanges. Physical Review E, 83(1): 016108, 2011.
E.D. Sontag. Mathematical control theory: deterministic finite dimensional systems, Springer Science, Vol. 6, Second Edition, 1998.
S.H. Strogatz. Exploring complex networks. Nature, 410(6825): 268–276, 2001.
K. Sznajd–Weron, J. Sznajd. Opinion evolution in closed community. International Journal of Modern Physics C, 11(6): 1157–1165, 2000.
G. Toscani. Kinetic models of opinion formation. Communications in Mathematical Sciences, 4(3): 481–496, 2006.
F. Vazquez, P. L. Krapivsky, S. Redner. Constrained opinion dynamics: freezing and slow evolution. Journal of Physics A: Mathematical and General, 36(3): L61, 2003.
T. Vicsek, A. Zafeiris. Collective motion. Physics Reports, 517(3): 71–140, 2012.
C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Archive for Rational Mechanics and Analysis, 143(3): 273–307, 1998.
D.J. Watts, S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393: 440–442, 1998.
W. Weidlich. Sociodynamics: a Systematic Approach to Mathematical Modeling in the Social Sciences, Harwood Academic Publishers, Amsterdam, 2000.
G. Weisbuch, G. Deffuant, F. Amblard. Persuasion dynamics. Physica A: Statistical Mechanics and its Applications, 353: 555–575, 2005.
Y.-B. Xie, T. Zhou, B.-H. Wang. Scale-free networks without growth. Physica A: Statistical Mechanics and its Applications, 387: 1683–1688, 2008.
Acknowledgements
This work has been written within the activities of the National Groups of Scientific Computing (GNCS) and Mathematical Physics (GNFM) of the National Institute of High Mathematics of Italy (INDAM). GA acknowledges the ERC-Starting Grant project High-Dimensional Sparse Optimal Control (HDSPCONTR). GT acknowledges the partial support of the MIUR project Optimal mass transportation, geometrical and functional inequalities with applications.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix: Numerical Simulation Methods
Appendix: Numerical Simulation Methods
In this short appendix we sketch briefly some particular numerical technique used to produce the various simulation results presented in the manuscript. We omit the description of the Monte Carlo simulation approach for the Boltzmann equation describing the opinion exchange dynamics addressing the interested reader to [89]. For the development of Monte Carlo methods that works in the Fokker-Planck regime we refer to [5].
We first summarize the Monte Carlo approach used to deal with the evolution of the social network and then the steady state preserving finite-difference approach used for the mean-field models. More details can be found in [10].
1.1 Monte Carlo Algorithm for the Evolution of the Network
The evolution of the network is given by
Let \(f^n = f(w,c,t^n)\) the empirical density function for the density of agents at time \(t^n\) with opinion w and connections c. For any given opinion w we approximate the solution of the above problem at time \(t^{n+1}\) by
with boundary conditions
and temporal discretization such that
The algorithm to simulate the above equation reads as follows
Algorithm 1
-
1.
Sample \((w^0_i,c^0_i)\), with \(i=1,\ldots ,N_s\), from the distribution \(f^{0}(w,c)\).
-
2.
for \(n=0\) to \(n_{tot}-1\)
-
a.
Compute \(\gamma ^n =\frac{1}{N_s} \sum _{j=1}^{N_s}c^n_j\);
-
b.
Fix \(\varDelta t\) such that condition (A3) is satisfied.
-
c.
for \(k=1\) to \(N_s\)
-
i.
Compute the following probabilities rates
$$\begin{aligned} p_k^{(a)} =\frac{\varDelta t V_a(c_k^n+\alpha )}{\gamma ^n+\alpha },\qquad p_k^{(r)} = \frac{\varDelta t V_r(c_k^n+\beta )}{\gamma ^n+\beta }, \end{aligned}$$ -
ii.
Set \(c^*_k =c_k^n\).
-
iii.
if \(0 \le c_k^*\le c_{\text {max}}-1\),
with probability \(p_k^{(a)}\) add a connection: \(c_k^* = c_k^* +1\);
-
iv.
if \(1 \le c_k^*\le c_{\text {max}}\),
with probability \(p_k^{(r)}\) remove a connection: \(c_k^* = c_k^* -1\);
-
end for
-
i.
-
d.
set \(c^{n+1}_i = c^*_i\), for all \(i= 1,\ldots , N_s\).
-
end for
-
a.
1.2 Chang-Cooper Type Numerical Schemes
In the domain \((w,c)\in I\times {\mathscr {C}}\) we consider the Fokker-Planck system
with zero flux boundary condition on w, initial data \(f(w,c,0)=f_0(w,c)\) and
where \(\mathscr {P}[f]\) is given by (101). Let us introduce a uniform grid \(w_{i}=-1+i\varDelta w\), \(i=0,\ldots ,N\) with \(\varDelta w = 2/N\), we denote by \(w_{i \pm 1/2}=w_i \pm \varDelta w/2\) and define
Integrating equation (A4) yields
where \(\mathscr {F}_{i}[f]\) is the flux function characterizing the numerical discretization. We assume the Chang-Cooper flux function
where \(D_{i+1/2}=D(w_{i+1/2},c)\) and \(D'_{i+1/2}=D'(w_{i+1/2},c)\). The weights \(\delta _{i+1/2}\) have to be chosen in such a way that a steady state solution is preserved. Moreover this choice permits also to preserve nonnegativity of the numerical density. The choice
where
leads to a second order Chang-Cooper nonlinear approximation of the original problem. Note that here, at variance with the standard Chang-Cooper scheme [39], the weights depend on the solution itself as in [76]. Thus we have a nonlinear scheme which preserves the steady state with second order accuracy. In particular, by construction, the weight in (A5) are nonnegative functions with values in [0, 1].
Higher order accuracy of the steady state can be recovered using a more general numerical flux [10].
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Albi, G., Pareschi, L., Toscani, G., Zanella, M. (2017). Recent Advances in Opinion Modeling: Control and Social Influence. In: Bellomo, N., Degond, P., Tadmor, E. (eds) Active Particles, Volume 1 . Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-49996-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-49996-3_2
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-49994-9
Online ISBN: 978-3-319-49996-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)