[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

To Encode or to Propagate? The Best Choice for Each Constraint in SAT

  • Conference paper
Principles and Practice of Constraint Programming (CP 2013)

Abstract

Sophisticated compact SAT encodings exist for many types of constraints. Alternatively, for instances with many (or large) constraints, the SAT solver can also be extended with built-in propagators (the SAT Modulo Theories approach, SMT). For example, given a cardinality constraint x 1 + … + x n  ≤ k, as soon as k variables become true, such a propagator can set the remaining variables to false, generating a so-called explanation clause of the form \(x_1 \wedge \ldots \wedge x_k \rightarrow{\bar{x_i}}\). But certain “bottle-neck” constraints end up generating an exponential number of explanations, equivalent to a naive SAT encoding, much worse than using a compact encoding with auxiliary variables from the beginning. Therefore, Abío and Stuckey proposed starting off with a full SMT approach and partially encoding, on the fly, only certain “active” parts of constraints. Here we build upon their work. Equipping our solvers with some additional bookkeeping to monitor constraint activity has allowed us to shed light on the effectiveness of SMT: many constraints generate very few, or few different, explanations. We also give strong experimental evidence showing that it is typically unnecessary to consider partial encodings: it is competitive to encode the few really active constraints entirely. This makes the approach amenable to any kind of constraint, not just the ones for which partial encodings are known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anbulagan, Grastien, A.: Importance of Variables Semantic in CNF Encoding of Cardinality Constraints. In: Bulitko, V., Beck, J.C. (eds.) Eighth Symposium on Abstraction, Reformulation, and Approximation, SARA 2009. AAAI (2009)

    Google Scholar 

  2. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Mayer-Eichberger, V.: A new look at bdds for pseudo-boolean constraints. J. Artif. Intell. Res (JAIR) 45, 443–480 (2012)

    MATH  Google Scholar 

  3. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality Networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abío, I., Stuckey, P.J.: Conflict directed lazy decomposition. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 70–85. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo boolean constraints to sat. JSAT 2(1-4), 191–200 (2006)

    MATH  Google Scholar 

  8. Bailleux, O., Boufkhad, Y., Roussel, O.: New Encodings of Pseudo-Boolean Constraints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)

    Google Scholar 

  10. Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 154–172. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    MATH  Google Scholar 

  12. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust SAT-Solver. In: 2002 Conference on Design, Automation, and Test in Europe, DATE 2002, pp. 142–149. IEEE Computer Society (2002)

    Google Scholar 

  13. Manolios, P., Papavasileiou, V.: Pseudo-Boolean solving by incremental translation to SAT. In: Formal Methods in Computer-Aided Design, FMCAD 2011 (2011)

    Google Scholar 

  14. Marques-Silva, J., Planes, J.: Algorithms for Maximum Satisfiability using Unsatisfiable Cores. In: 2008 Conference on Design, Automation and Test in Europe Conference, DATE 2008, pp. 408–413. IEEE Computer Society (2008)

    Google Scholar 

  15. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM, JACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  16. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Büttner, M., Rintanen, J.: uttner and J. Rintanen. Satisfiability planning with constraints on the number of actions. In: Biundo, S., Myers, K.L., Rajan, K. (eds.) 15th International Conference on Automated Planning and Scheduling, ICAPS 2005, pp. 292–299. AAAI (2005)

    Google Scholar 

  19. Vardi, M.Y.: Symbolic techniques in propositional satisfiability solving. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 2–3. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Warners, J.P.: A Linear-Time Transformation of Linear Inequalities into Conjunctive Normal Form. Information Processing Letters 68(2), 63–69 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Stuckey, P.J. (2013). To Encode or to Propagate? The Best Choice for Each Constraint in SAT. In: Schulte, C. (eds) Principles and Practice of Constraint Programming. CP 2013. Lecture Notes in Computer Science, vol 8124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40627-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40627-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40626-3

  • Online ISBN: 978-3-642-40627-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics