[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Normalizing Cardinality Rules Using Merging and Sorting Constructions

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8148))

  • 1077 Accesses

Abstract

Answer-set programs become more expressive if extended by cardinality rules. Certain implementation techniques, however, presume the translation of such rules back into normal rules. This has been previously realized using a BDD-based transformation which may produce a quadratic number of rules in the worst case. In this paper, we present two further constructions which are based on Boolean circuits for merging and sorting and which have been considered, e.g., in the context of the propositional satisfiability (SAT) problem and its extensions. Such circuits can be used to express cardinality constraints in a more compact way. Thus, in order to normalize cardinality rules, we first develop an ASP encoding of a sorting circuit, on top of which the second translation, one encoding a selection circuit, is devised. Because sorting is more general than cardinality checking, we also present ways to prune the resulting sorting and selection programs. The experimental part illustrates the compactness of the new normalizations and points out cases where computational performance is improved.

The support from the Finnish Centre of Excellence in Computational Inference Research (COIN) funded by the Academy of Finland (under grant #251170) is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo Boolean constraints to SAT. JSAT 2(1-4), 191–200 (2006)

    MATH  Google Scholar 

  3. Batcher, K.: Sorting networks and their applications. In: AFIPS Spring Joint Computer Conference, pp. 307–314. ACM (1968)

    Google Scholar 

  4. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communications of the ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  5. Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 154–172. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2(1-4), 1–26 (2006)

    MATH  Google Scholar 

  8. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to practice. Artificial Intelligence 187, 52–89 (2012)

    Article  MathSciNet  Google Scholar 

  9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of ICLP 1988, pp. 1070–1080 (1988)

    Google Scholar 

  10. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 111–130. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Janhunen, T., Niemelä, I.: Applying visible strong equivalence in answer-set program transformations. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 363–379. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  14. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-set programming. Theory and Practice of Logic Programming 8(2), 217–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bomanson, J., Janhunen, T. (2013). Normalizing Cardinality Rules Using Merging and Sorting Constructions. In: Cabalar, P., Son, T.C. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2013. Lecture Notes in Computer Science(), vol 8148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40564-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40564-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40563-1

  • Online ISBN: 978-3-642-40564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics