Antoine B, Bonnal H, Renault E (2007) On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood. J. Econometrics 138(2):461-487.
- Bayraksan G, Love DK (2015) Data-driven stochastic programming using phi-divergences. The Operations Research Revolution (INFORMS), 1-19.
Paper not yet in RePEc: Add citation now
- Beiglböck M, Siorpaes P (2015) Pathwise versions of the Burkholder-Davis-Gundy inequality. Bernoulli 21(1):360-373.
Paper not yet in RePEc: Add citation now
Ben-Tal A, Den Hertog D, De Waegenaere A, Melenberg B, Rennen G (2013) Robust solutions of optimization problems affected by uncertain probabilities. Management Sci. 59(2):341-357.
- Blake C, Merz CJ (1998) Uci repository of machine learning databases.
Paper not yet in RePEc: Add citation now
- Blanchet J, Kang Y (2017) Distributionally robust groupwise regularization estimator. Proc. Machine Learning Res. 77:97-112.
Paper not yet in RePEc: Add citation now
- Blanchet J, Kang Y (2020) Semi-supervised learning based on distributionally robust optimization. Data Analysis and Applications 3: Computational, Classification, Financial, Statistical and Stochastic Methods, vol. 5, 1-33.
Paper not yet in RePEc: Add citation now
- Blanchet J, Kang Y, Zhang F, He F, Hu Z (2019e) Doubly robust data-driven distributionally robust optimization. Proc. 18th Applied Stochastic Models and Data Analysis Internat. Conf. with Demographics Workshop, 249-262.
Paper not yet in RePEc: Add citation now
- Blanchet J, Kang Y, Zhang F, Hu Z (2019c) A distributionally robust boosting algorithm. Proc. 2019 Winter Simulation Conf. (WSC), 3728-3739.
Paper not yet in RePEc: Add citation now
- Blanchet J, Kang Y, Zhang F, Murthy K (2019d) Data-driven optimal transport cost selection for distributionally robust optimization. Proc. 2019 Winter Simulation Conf. (WSC), 3740-3751.
Paper not yet in RePEc: Add citation now
Blanchet J, Murthy K (2019) Quantifying distributional model risk via optimal transport. Math. Oper. Res. 44(2):565-600.
Bravo F (2004) Empirical likelihood based inference with applications to some econometric models. Econometric Theory 20(02):231-264.
Chen SX (1993) On the accuracy of empirical likelihood confidence regions for linear regression model. Ann. Instit. Statist. Math. 45(4):621-637.
Chen SX, Keilegom IV (2009) A review on empirical likelihood methods for regression. TEST 18(3):415-447.
- Chen Z, Kuhn D, Wiesemann W (2018) Data-driven chance constrained programs over Wasserstein balls. Preprint, submitted September 1, 2018, https://arxiv.org/abs/1809.00210.
Paper not yet in RePEc: Add citation now
- Dua D, Graff C (2019) UCI machine learning repository. http://archive.ics.uci.edu/ml.
Paper not yet in RePEc: Add citation now
- Duchi J, Glynn P, Namkoong H (2016) Statistics of robust optimization: A generalized empirical likelihood approach. Preprint, submitted June 30, 2018, https://arxiv.org/abs/1610.03425.
Paper not yet in RePEc: Add citation now
- Duchi J, Namkoong H (2018) Learning models with uniform performance via distributionally robust optimization. Preprint, submitted July 18, 2020, https://arxiv.org/abs/1810.08750.
Paper not yet in RePEc: Add citation now
Einmahl JH, McKeague IW (1999) Confidence tubes for multiple quantile plots via empirical likelihood. Ann. Statist. 27(4):1348-1367.
- Esfahani PM, Kuhn D (2018) Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations. Math. Programming 171(1-2):115-166.
Paper not yet in RePEc: Add citation now
- Gao R, Kleywegt AJ (2016) Distributionally robust stochastic optimization with Wasserstein distance. Preprint, submitted July 16, 2016, https://arxiv.org/abs/1604.02199.
Paper not yet in RePEc: Add citation now
- Gao R, Xie L, Xie Y, Xu H (2018) Robust hypothesis testing using Wasserstein uncertainty sets. Advances in Neural Information Processing Systems, 7902-7912.
Paper not yet in RePEc: Add citation now
- Governors Federal Reserve System (2019) Annual report. Accessed February 1, 2021, https://www.federalreserve.gov/publications/annual-report.htm.
Paper not yet in RePEc: Add citation now
Guggenberger P (2008) Finite sample evidence suggesting a heavy tail problem of the generalized empirical likelihood estimator. Econometric Rev. 27(4-6):526-541.
- Hastie T, Tibshirani R, Friedman J, Franklin J (2005) The elements of statistical learning: data mining, inference and prediction. Math. Intelligencer 27(2):83-85.
Paper not yet in RePEc: Add citation now
- Hollander M, McKeague IW (1997) Likelihood ratio-based confidence bands for survival functions. J. Amer. Statist. Assoc. 92(437):215-226.
Paper not yet in RePEc: Add citation now
- Hu W, Niu G, Sato I, Sugiyama M (2018) Does distributionally robust supervised learning give robust classifiers? Internat. Conf. on Machine Learning, 2034-2042.
Paper not yet in RePEc: Add citation now
- Imbens GW (2012) Generalized method of moments and empirical likelihood. J. Bus. Econom. Statist 20(4):493-506.
Paper not yet in RePEc: Add citation now
- Kitamura Y (2007) Empirical likelihood methods in econometrics: Theory and practice. Blundell R, Newey W, Persson T, eds. Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress (Econometric Society Monographs (Cambridge University Press, Cambridge), 174-237.
Paper not yet in RePEc: Add citation now
- Lam H, Zhou E (2015) Quantifying uncertainty in sample average approximation. 2015 Winter Simulation Conf. (WSC), 3846-3857.
Paper not yet in RePEc: Add citation now
- Lam H, Zhou E (2017) The empirical likelihood approach to quantifying uncertainty in sample average approximation. Oper. Res. Lett. 45(4):301-307.
Paper not yet in RePEc: Add citation now
- Li G, Hollander M, McKeague IW, Yang J (1996) Nonparametric likelihood ratio confidence bands for quantile functions from incomplete survival data. Ann. Statist. 24(2):628-640.
Paper not yet in RePEc: Add citation now
- Li G, Qin J, Tiwari RC (1997) Semiparametric likelihood ratio-based inferences for truncated data. J. Amer. Statist. Assoc. 92(437):236-245.
Paper not yet in RePEc: Add citation now
- Luenberger DG (1973) Introduction to Linear and Nonlinear Programming, vol. 28 (Addison-Wesley, Reading, MA).
Paper not yet in RePEc: Add citation now
- Mohajerin Esfahani P, Kuhn D (2018) Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations. Math. Programming 171(1):115-166.
Paper not yet in RePEc: Add citation now
- Murphy SA (1995) Likelihood ratio-based confidence intervals in survival analysis. J. Amer. Statist. Assoc. 90(432):1399-1405.
Paper not yet in RePEc: Add citation now
Newey WK, Smith RJ (2004) Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 72(1):219-255.
- Owen A (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2):237-249.
Paper not yet in RePEc: Add citation now
- Owen A (1990) Empirical likelihood ratio confidence regions. Ann. Statist. 18(1):90-120.
Paper not yet in RePEc: Add citation now
- Owen A (1991) Empirical likelihood for linear models. Ann. Statist. 19(4):1725-1747.
Paper not yet in RePEc: Add citation now
- Owen A (2001) Empirical Likelihood (CRC Press, Boca Raton, FL).
Paper not yet in RePEc: Add citation now
- Qin J, Lawless J (1995) Estimating equations, empirical likelihood and constraints on parameters. Canadian J. Stat. 23(2):145-159.
Paper not yet in RePEc: Add citation now
- Rudin W (1964) Principles of Mathematical Analysis, vol. 3 (McGraw-Hill, New York).
Paper not yet in RePEc: Add citation now
- Ruszczynski AP, Shapiro A (2003) Stochastic Programming, vol. 10 (Elsevier, Amsterdam).
Paper not yet in RePEc: Add citation now
- Shafieezadeh-Abadeh S, Esfahani PM, Kuhn D (2015) Distributionally robust logistic regression. Advances in Neural Information Processing Systems, vol 28 (Curran Associates, Inc.), 1576-1584.
Paper not yet in RePEc: Add citation now
- Shapiro A, Dentcheva D (2014) Lectures on Stochastic Programming: Modeling and Theory, vol. 16 (SIAM, Philadelphia).
Paper not yet in RePEc: Add citation now
- Sinha A, Namkoong H, Duchi J (2018) Certifiable distributional robustness with principled adversarial training. Internat. Conf. on Learning Representations.
Paper not yet in RePEc: Add citation now
- Villani C (2008) Optimal Transport: Old and New (Springer Science & Business Media, New York).
Paper not yet in RePEc: Add citation now
- Volpi R, Namkoong H, Sener O, Duchi JC, Murino V, Savarese S (2018) Generalizing to unseen domains via adversarial data augmentation. Advances in Neural Information Processing Systems 5334-5344.
Paper not yet in RePEc: Add citation now
- Wang Q, Rao JNK (2001) Empirical likelihood for linear regression models under imputation for missing responses. Canadian J. Statist. 29(4):597-608.
Paper not yet in RePEc: Add citation now
- Wang Z, Glynn PW, Ye Y (2009) Likelihood robust optimization for data-driven newsvendor problems. Comput. Management Sci. 13(2):241-261.
Paper not yet in RePEc: Add citation now
- Wilks SS (1938) The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Statist. 9(1):60-62.
Paper not yet in RePEc: Add citation now
- Yang I (2017) A convex optimization approach to distributionally robust markov decision processes with wasserstein distance. IEEE Control Systems Lett. 1(1):164-169.
Paper not yet in RePEc: Add citation now
- Zhao C, Guan Y (2018) Data-driven risk-averse stochastic optimization with Wasserstein metric. Oper. Res. Lett. 46(2):262-267.
Paper not yet in RePEc: Add citation now
- Zhao Y, Wang H (2008) Empirical likelihood inference for the regression model of mean quality-adjusted lifetime with censored data. Canadian J. Statist. 36(3):463-478.
Paper not yet in RePEc: Add citation now
- Zhou M (2015) Empirical Likelihood Method in Survival Analysis, vol. 79 (CRC Press, Boca Raton, FL).
Paper not yet in RePEc: Add citation now