[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
create a website
Is It Possible to Forecast the Price of Bitcoin?. (2021). Goutte, Stephane ; Guegan, Dominique ; Chevallier, Julien.
In: Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers).
RePEc:hal:cesptp:halshs-04250269.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 122

References cited by this document

Cocites: 28

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abadie, A.; Kasy, M. Choosing among regularized estimators in empirical economics: The risk of machine learning. Rev. Econ. Stat. 2019, 101, 743–762. [CrossRef]

  2. Abedifar, P.; Giudici, P.; Hashem, S.Q. Heterogeneous market structure and systemic risk: Evidence from dual banking systems. J. Financ. Stab. 2017, 33, 96–119. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Abraham, L.; Guegan, D. The other side of the Coin: Risks of the Libra Blockchain. arXiv 2019, arXiv:1910.07775.

  4. Ahelegbey, D.F.; Billio, M.; Casarin, R. Bayesian graphical models for structural vector autoregressive processes. J. Appl. Econom. 2016, 31, 357–386. [CrossRef]

  5. Akyildirim, E.; Goncu, A.; Sensoy, A. Prediction of cryptocurrency returns using machine learning. Ann. Oper. Res. 2021, 297, 3–36. [CrossRef]

  6. Alexander, C.; Choi, J.; Park, H.; Sohn, S. BitMEX bitcoin derivatives: Price discovery, informational efficiency, and hedging effectiveness. J. Futur. Mark. 2020, 40, 23–43. [CrossRef]

  7. Alvarez-Ramirez, J.; Rodriguez, E.; Ibarra-Valdez, C. Long-range correlations and asymmetry in the Bitcoin market. Phys. A Stat. Mech. Appl. 2018, 492, 948–955. [CrossRef]

  8. Aslanidis, N.; Bariviera, A.F.; Martínez-Ibañez, O. An analysis of cryptocurrencies conditional cross correlations. Financ. Res. Lett. 2019, 31, 130–137. [CrossRef]

  9. Athey, S.; Imbens, G.W. Machine learning methods that economists should know about. Annu. Rev. Econ. 2019, 11, 685–725. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Atsalakis, G.S.; Atsalaki, I.G.; Pasiouras, F.; Zopounidis, C. Bitcoin price forecasting with neuro-fuzzy techniques. Eur. J. Oper. Res. 2019, 276, 770–780. [CrossRef]

  11. Bariviera, A.F.; Basgall, M.J.; Hasperué, W.; Naiouf, M. Some stylized facts of the Bitcoin market. Phys. A Stat. Mech. Appl. 2017, 484, 82–90. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Baumöhl, E. Are cryptocurrencies connected to forex? A quantile cross-spectral approach. Financ. Res. Lett. 2019, 29, 363–372. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. Baur, D.G.; Dimpfl, T. Price discovery in bitcoin spot or futures? J. Futur. Mark. 2019, 39, 803–817. [CrossRef]

  14. Begušić, S.; Kostanjčar, Z.; Stanley, H.E.; Podobnik, B. Scaling properties of extreme price fluctuations in Bitcoin markets. Phys. A Stat. Mech. Appl. 2018, 510, 400–406. [CrossRef]

  15. Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095.
    Paper not yet in RePEc: Add citation now
  16. Billio, M.; Getmansky, M.; Lo, A.W.; Pelizzon, L. Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J. Financ. Econ. 2012, 104, 535–559. [CrossRef] Forecasting 2021, 3 417
    Paper not yet in RePEc: Add citation now
  17. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [CrossRef]
    Paper not yet in RePEc: Add citation now
  18. Bouri, E.; Molnár, P.; Azzi, G.; Roubaud, D.; Hagfors, L.I. On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Financ. Res. Lett. 2017, 20, 192–198. [CrossRef]

  19. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef] Forecasting 2021, 3 419
    Paper not yet in RePEc: Add citation now
  20. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. Briere, M.; Oosterlinck, K.; Szafarz, A. Virtual currency, tangible return: Portfolio diversification with bitcoin. J. Asset Manag. 2015, 16, 365–373. [CrossRef]

  22. Busa-Fekete, R.; Kégl, B.; Éltető, T.; Szarvas, G. A robust ranking methodology based on diverse calibration of AdaBoost. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, Greece, 5–9 September 2011; pp. 263–279.
    Paper not yet in RePEc: Add citation now
  23. Bussmann, N.; Giudici, P.; Marinelli, D.; Papenbrock, J. Explainable machine learning in credit risk management. Comput. Econ. 2021, 57, 203–216. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Cao, L.; Gu, Q. Dynamic support vector machines for non-stationary time series forecasting. Intell. Data Anal. 2002, 6, 67–83. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Caporale, G.M.; Zekokh, T. Modelling volatility of cryptocurrencies using Markov-Switching GARCH models. Res. Int. Bus. Financ. 2019, 48, 143–155. [CrossRef]

  26. Chen, T.H.; Chen, M.Y.; Du, G.T. The determinants of bitcoin’s price: Utilization of GARCH and machine learning approaches. Comput. Econ. 2021, 57, 267–280. [CrossRef]

  27. Cheng, S.F.; De Franco, G.; Jiang, H.; Lin, P. Riding the blockchain mania: public firms’ speculative 8-K disclosures. Manag. Sci. 2019, 65, 5901–5913.

  28. Clauset, A.; Newman, M.E.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Cohen, G. Forecasting Bitcoin Trends Using Algorithmic Learning Systems. Entropy 2020, 22, 838. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  30. Dahir, A.M.; Mahat, F.; Noordin, B.A.A.; Ab Razak, N.H. Dynamic connectedness between Bitcoin and equity market information across BRICS countries: Evidence from TVP-VAR connectedness approach. Int. J. Manag. Financ. 2019, 16, 357–371. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Dasarathy, B.V.; Belur, S. A composite classifier system design: Concepts and methodology. Proc. IEEE 1979, 67, 708–713. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. De Prado, M.M.L. Machine Learning for Asset Managers; Cambridge University Press: Cambridge, UK, 2020.
    Paper not yet in RePEc: Add citation now
  33. Dey, A.K.; Akcora, C.G.; Gel, Y.R.; Kantarcioglu, M. On the role of local blockchain network features in cryptocurrency price formation. Can. J. Stat. 2020, 48, 561–581. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Dyhrberg, A.H. Hedging capabilities of bitcoin. Is it the virtual gold? Financ. Res. Lett. 2016, 16, 139–144. [CrossRef] Forecasting 2021, 3 418

  35. Easley, D.; O’Hara, M.; Basu, S. From mining to markets: The evolution of bitcoin transaction fees. J. Financ. Econ. 2019, 134, 91–109. [CrossRef]

  36. Entrop, O.; Frijns, B.; Seruset, M. The Determinants of Price Discovery on Bitcoin Markets. J. Futur. Mark. 2020, 40, 816–837. [CrossRef]

  37. Epprecht, C.; Guegan, D.; Veiga, . Comparing Variable Selection Techniques for Linear Regression: Lasso and Autometrics; Centre D’économie de la Sorbonne: Paris, France, 2013.
    Paper not yet in RePEc: Add citation now
  38. Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [CrossRef]

  39. Fang, L.; Bouri, E.; Gupta, R.; Roubaud, D. Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin? Int. Rev. Financ. Anal. 2019, 61, 29–36. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Fantazzini, D.; Nigmatullin, E.; Sukhanovskaya, V.; Ivliev, S. Everything You Always Wanted to Know about Bitcoin Modelling but Were Afraid to Ask; MPRA Paper No. 71946; MPRA: Munich, Germany, 2016; 50p.

  41. Farrell, M.H.; Liang, T.; Misra, S. Deep neural networks for estimation and inference. Econometrica 2021, 89, 181–213. [CrossRef]

  42. Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2018, 270, 654–669. [CrossRef]

  43. Foley, S.; Karlsen, J.R.; Putnin , š, T.J. Sex, drugs, and bitcoin: How much illegal activity is financed through cryptocurrencies? Rev. Financ. Stud. 2019, 32, 1798–1853. [CrossRef]

  44. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer: New York, NY, USA, 2001; Volume 1, Number 10.
    Paper not yet in RePEc: Add citation now
  45. Friedman, J.H.; Baskett, F.; Shustek, L.J. An algorithm for finding nearest neighbors. IEEE Trans. Comput. 1975, 100, 1000–1006. [CrossRef]
    Paper not yet in RePEc: Add citation now
  46. Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Geuder, J.; Kinateder, H.; Wagner, N.F. Cryptocurrencies as financial bubbles: The case of Bitcoin. Financ. Res. Lett. 2019, 31, 179–184 [CrossRef]

  48. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
    Paper not yet in RePEc: Add citation now
  49. Gillaizeau, M.; Jayasekera, R.; Maaitah, A.; Mishra, T.; Parhi, M.; Volokitina, E. Giver and the receiver: Understanding spillover effects and predictive power in cross-market Bitcoin prices. Int. Rev. Financ. Anal. 2019, 63, 86–104. [CrossRef]

  50. Giudici, P.; Polinesi, G. Crypto price discovery through correlation networks. Ann. Oper. Res. 2021, 299, 443–457. [CrossRef]

  51. Griffin, J.M.; Shams, A. Is Bitcoin really untethered? J. Financ. 2020, 75, 1913–1964. [CrossRef]

  52. Guégan, D.; Renault, T. Does investor sentiment on social media provide robust information for Bitcoin returns predictability? Financ. Res. Lett. 2021, 38, 101494. [CrossRef]
    Paper not yet in RePEc: Add citation now
  53. Guegan, D.; Frunza, M. Is the Bitcoin Rush Over? In Handbook: Cryptofinance and Mechanism of Exchange; Springer: Berlin, Germany, 2018.
    Paper not yet in RePEc: Add citation now
  54. Guesmi, K.; Saadi, S.; Abid, I.; Ftiti, Z. Portfolio diversification with virtual currency: Evidence from bitcoin. Int. Rev. Financ. Anal. 2019, 63, 431–437. [CrossRef]

  55. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009.
    Paper not yet in RePEc: Add citation now
  56. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  57. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844.
    Paper not yet in RePEc: Add citation now
  58. Hudson, R.; Urquhart, A. Technical trading and cryptocurrencies. Ann. Oper. Res. 2021, 297, 191–220. [CrossRef]

  59. Islam, S.R.; Eberle, W.; Bundy, S.; Ghafoor, S.K. Infusing domain knowledge in ai-based “black box” models for better explainability with application in bankruptcy prediction. arXiv 2019, arXiv:1905.11474.
    Paper not yet in RePEc: Add citation now
  60. Iworiso, J.; Vrontos, S. On the Directional Predictability of Equity Premium Using Machine Learning Techniques. J. Forecast. 2020, 39, 449–469. [CrossRef]
    Paper not yet in RePEc: Add citation now
  61. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112.
    Paper not yet in RePEc: Add citation now
  62. Jang, H.; Lee, J. An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information. IEEE Access 2017, 6, 5427–5437. [CrossRef]
    Paper not yet in RePEc: Add citation now
  63. Jay, P.; Kalariya, V.; Parmar, P.; Tanwar, S.; Kumar, N.; Alazab, M. Stochastic neural networks for cryptocurrency price prediction. IEEE Access 2020, 8, 82804–82818. [CrossRef]
    Paper not yet in RePEc: Add citation now
  64. Ji, Q.; Bouri, E.; Kristoufek, L.; Lucey, B. Realised volatility connectedness among Bitcoin exchange markets. Financ. Res. Lett. 2019, 38, 101391. [CrossRef]
    Paper not yet in RePEc: Add citation now
  65. Kapar, B.; Olmo, J. An analysis of price discovery between Bitcoin futures and spot markets. Econ. Lett. 2019, 174, 62–64. [CrossRef]

  66. Khuntia, S.; Pattanayak, J. Adaptive long memory in volatility of intra-day bitcoin returns and the impact of trading volume. Financ. Res. Lett. 2020, 32, 101077. [CrossRef]
    Paper not yet in RePEc: Add citation now
  67. Klein, T.; Thu, H.P.; Walther, T. Bitcoin is not the New Gold–A comparison of volatility, correlation, and portfolio performance. Int. Rev. Financ. Anal. 2018, 59, 105–116. [CrossRef]

  68. Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [CrossRef]
    Paper not yet in RePEc: Add citation now
  69. Kraken, I.R.D. Born to Run: December 2020 Market Recap & Outlook; Technical Report; Ordo AB Crypto, Blockchain Consulting & Cryptocurrency Financial Services Information: San Francisco, CA, USA, 2020.
    Paper not yet in RePEc: Add citation now
  70. Kurbatsky, V.G.; Sidorov, D.N.; Spiryaev, V.A.; Tomin, N.V. Forecasting nonstationary time series based on Hilbert-Huang transform and machine learning. Autom. Remote. Control 2014, 75, 922–934. [CrossRef]
    Paper not yet in RePEc: Add citation now
  71. Kurka, J. Do cryptocurrencies and traditional asset classes influence each other? Financ. Res. Lett. 2019, 31, 38–46. [CrossRef]

  72. Lambiotte, R.; Delvenne, J.C.; Barahona, M. Laplacian dynamics and multiscale modular structure in networks. arXiv 2008, arXiv:0812.1770.
    Paper not yet in RePEc: Add citation now
  73. Le, T.L.; Abakah, E.J.A.; Tiwari, A.K. Time and frequency domain connectedness and spill-over among fintech, green bonds and cryptocurrencies in the age of the fourth industrial revolution. Technol. Forecast. Soc. Chang. 2021, 162, 120382. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  74. Li, Y.; Zheng, Z.; Dai, H.N. Enhancing Bitcoin Price Fluctuation Prediction Using Attentive LSTM and Embedding Network. Appl. Sci. 2020, 10, 4872. [CrossRef]
    Paper not yet in RePEc: Add citation now
  75. Livieris, I.E.; Kiriakidou, N.; Stavroyiannis, S.; Pintelas, P. An Advanced CNN-LSTM Model for Cryptocurrency Forecasting. Electronics 2021, 10, 287. [CrossRef]
    Paper not yet in RePEc: Add citation now
  76. Maaten, L.v.d.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
    Paper not yet in RePEc: Add citation now
  77. Maclin, R.; Shavlik, J.W. Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. IJCAI 1995, 95, 524–531.
    Paper not yet in RePEc: Add citation now
  78. Makarov, I.; Schoar, A. Trading and arbitrage in cryptocurrency markets. J. Financ. Econ. 2020, 135, 293–319. [CrossRef]

  79. Mallqui, D.C.; Fernandes, R.A. Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques. Appl. Soft Comput. 2019, 75, 596–606. [CrossRef]
    Paper not yet in RePEc: Add citation now
  80. Maudes, J.; Rodríguez, J.J.; García-Osorio, C.; García-Pedrajas, N. Random feature weights for decision tree ensemble construction. Inf. Fusion 2012, 13, 20–30. [CrossRef]
    Paper not yet in RePEc: Add citation now
  81. Mensi, W.; Al-Yahyaee, K.H.; Kang, S.H. Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Financ. Res. Lett. 2019, 29, 222–230. [CrossRef]
    Paper not yet in RePEc: Add citation now
  82. Mensi, W.; Sensoy, A.; Aslan, A.; Kang, S.H. High-frequency asymmetric volatility connectedness between Bitcoin and major precious metals markets. N. Am. J. Econ. Financ. 2019, 50, 101031. [CrossRef]
    Paper not yet in RePEc: Add citation now
  83. Misheva, B.H.; Osterrieder, J.; Hirsa, A.; Kulkarni, O.; Lin, S.F. Explainable AI in Credit Risk Management. arXiv 2021, arXiv:2103.00949.
    Paper not yet in RePEc: Add citation now
  84. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; White Paper; Bitcoin.org: New York, NY, USA 2009.
    Paper not yet in RePEc: Add citation now
  85. Nakano, M.; Takahashi, A.; Takahashi, S. Bitcoin technical trading with artificial neural network. Phys. A Stat. Mech. Appl. 2018, 510, 587–609. [CrossRef]

  86. Nicola, G.; Cerchiello, P.; Aste, T. Information network modeling for US banking systemic risk. Entropy 2020, 22, 1331. [CrossRef]
    Paper not yet in RePEc: Add citation now
  87. Pagnotta, E. Decentralizing Money: Bitcoin Prices and Blockchain Security. Rev. Financ. Stud. 2020. [CrossRef]
    Paper not yet in RePEc: Add citation now
  88. Papadopoulos, A.N.; Manolopoulos, Y. Nearest Neighbor Search: A Database Perspective; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006.
    Paper not yet in RePEc: Add citation now
  89. Philippas, D.; Rjiba, H.; Guesmi, K.; Goutte, S. Media attention and Bitcoin prices. Financ. Res. Lett. 2019, 30, 37–43. [CrossRef]
    Paper not yet in RePEc: Add citation now
  90. Phillip, A.; Chan, J.; Peiris, S. On long memory effects in the volatility measure of Cryptocurrencies. Financ. Res. Lett. 2019, 28, 95–100. [CrossRef]
    Paper not yet in RePEc: Add citation now
  91. Polasik, M.; Piotrowska, A.I.; Wisniewski, T.P.; Kotkowski, R.; Lightfoot, G. Price fluctuations and the use of Bitcoin: An empirical inquiry. Int. J. Electron. Commer. 2015, 20, 9–49. [CrossRef]
    Paper not yet in RePEc: Add citation now
  92. Prat, J.; Walter, B. An equilibrium model of the market for bitcoin mining. J. Political Econ. 2021. [CrossRef]

  93. Reuters. Bitcoin Hits $1 Trillion Market Cap, Surges to Fresh All-Time Peak. Technical Report. Available online: https: //www.reuters.com/article/us-crypto-currency-bitcoin-idUSKBN2AJ0GC (accessed on 19 February 2021).
    Paper not yet in RePEc: Add citation now
  94. Ridgeway, G.; Madigan, D.; Richardson, T. Boosting methodology for regression problems. In Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 3–6 January 1999.
    Paper not yet in RePEc: Add citation now
  95. Riedwyl, H.; Schüpbach, M. Parquet diagram to plot contingency tables. Softstat 1994, 93, 293–299.
    Paper not yet in RePEc: Add citation now
  96. Rosenblatt, F. Perceptron simulation experiments. Proc. IRE 1960, 48, 301–309. [CrossRef]
    Paper not yet in RePEc: Add citation now
  97. Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson Education Limited: Kuala Lumpur, Malaysia, 2016.
    Paper not yet in RePEc: Add citation now
  98. Saad, M.; Choi, J.; Nyang, D.; Kim, J.; Mohaisen, A. Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions. IEEE Syst. J. 2019, 14, 321–332. [CrossRef] Forecasting 2021, 3 420
    Paper not yet in RePEc: Add citation now
  99. Schapire, R.E. Explaining adaboost. In Empirical Inference; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52.
    Paper not yet in RePEc: Add citation now
  100. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
    Paper not yet in RePEc: Add citation now
  101. Scholkopf, B. Support vector machines: a practical consequence of learning theory. IEEE Intell. Syst. 1998, 13, 4.
    Paper not yet in RePEc: Add citation now
  102. Selmi, R.; Mensi, W.; Hammoudeh, S.; Bouoiyour, J. Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold. Energy Econ. 2018, 74, 787–801. [CrossRef]

  103. Shen, D.; Urquhart, A.; Wang, P. Does twitter predict Bitcoin? Econ. Lett. 2019, 174, 118–122. [CrossRef]

  104. Shynkevich, A. Bitcoin Futures, Technical Analysis and Return Predictability in Bitcoin Prices. J. Forecast. 2020. [CrossRef]
    Paper not yet in RePEc: Add citation now
  105. Sorjamaa, A.; Hao, J.; Reyhani, N.; Ji, Y.; Lendasse, A. Methodology for long-term prediction of time series. Neurocomputing 2007, 70, 2861–2869. [CrossRef]
    Paper not yet in RePEc: Add citation now
  106. Su, C.W.; Li, Z.Z.; Tao, R.; Si, D.K. Testing for Multiple Bubbles in Bitcoin Markets: A. Econ. Bull. 2017, 36, 843–850.
    Paper not yet in RePEc: Add citation now
  107. Sun, X.; Liu, M.; Sima, Z. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. Lett. 2020, 32,

  108. Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2011, 73, 273–282. [CrossRef]

  109. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [CrossRef]
    Paper not yet in RePEc: Add citation now
  110. Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245.
    Paper not yet in RePEc: Add citation now
  111. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  112. Wang, X.; Han, M. Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 2014, 145, 90–97. [CrossRef]
    Paper not yet in RePEc: Add citation now
  113. Wei, Y.; Dukes, A. Cryptocurrency Adoption with Speculative Price Bubbles. Mark. Sci. 2021, 40, 241–260. [CrossRef]
    Paper not yet in RePEc: Add citation now
  114. Wickelmaier, F. An Introduction to MDS; Sound Quality Research Unit, Aalborg University: Aalborg Øst, Denmark, 2003; Volume 46, pp. 1–26.
    Paper not yet in RePEc: Add citation now
  115. Windisch, D. Loading deep networks is hard: The pyramidal case. Neural Comput. 2005, 17, 487–502. [CrossRef]
    Paper not yet in RePEc: Add citation now
  116. Wołk, K. Advanced social media sentiment analysis for short-term cryptocurrency price prediction. Expert Syst. 2020, 37, e12493. [CrossRef]
    Paper not yet in RePEc: Add citation now
  117. Ying, C.; Qi-Guang, M.; Jia-Chen, L.; Lin, G. Advance and prospects of AdaBoost algorithm. Acta Autom. Sin. 2013, 39, 745–758.
    Paper not yet in RePEc: Add citation now
  118. Zargar, F.N.; Kumar, D. Informational inefficiency of Bitcoin: A study based on high-frequency data. Res. Int. Bus. Financ. 2019, 47, 344–353. [CrossRef]
    Paper not yet in RePEc: Add citation now
  119. Zhao, P.; Yu, B. On model selection consistency of Lasso. J. Mach. Learn. Res. 2006, 7, 2541–2563.
    Paper not yet in RePEc: Add citation now
  120. Zhao, Q.; Hastie, T. Causal interpretations of black-box models. J. Bus. Econ. Stat. 2021, 39, 272–281. [CrossRef]
    Paper not yet in RePEc: Add citation now
  121. Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [CrossRef]

  122. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [CrossRef]

Cocites

Documents in RePEc which have cited the same bibliography

  1. Machine learning and the optimization of prediction-based policies. (2024). Battiston, Pietro ; Santoro, Alessandro ; Gamba, Simona.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:199:y:2024:i:c:s0040162523007655.

    Full description at Econpapers || Download paper

  2. Optimal Bias-Correction and Valid Inference in High-Dimensional Ridge Regression: A Closed-Form Solution. (2024). Gao, Zhaoxing.
    In: Papers.
    RePEc:arx:papers:2405.00424.

    Full description at Econpapers || Download paper

  3. Broadening Economics in the Era of Artificial Intelligence and Experimental Evidence. (2023). Niederreiter, Jan.
    In: Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti.
    RePEc:spr:italej:v:9:y:2023:i:1:d:10.1007_s40797-021-00171-2.

    Full description at Econpapers || Download paper

  4. .

    Full description at Econpapers || Download paper

  5. How is machine learning useful for macroeconomic forecasting?. (2022). Surprenant, Stephane ; Stevanovic, Dalibor ; Leroux, Maxime ; Coulombe, Philippe Goulet.
    In: Journal of Applied Econometrics.
    RePEc:wly:japmet:v:37:y:2022:i:5:p:920-964.

    Full description at Econpapers || Download paper

  6. Robust Empirical Bayes Confidence Intervals. (2022). Plagborg-Moller, Mikkel ; Plagborgmoller, Mikkel ; Kolesar, Michal ; Armstrong, Timothy B.
    In: Econometrica.
    RePEc:wly:emetrp:v:90:y:2022:i:6:p:2567-2602.

    Full description at Econpapers || Download paper

  7. A Nonparametric Approach for Studying Teacher Impacts. (2022). McMillan, Robert ; Gu, Jiaying ; Gilraine, Mike.
    In: Working Papers.
    RePEc:tor:tecipa:tecipa-716.

    Full description at Econpapers || Download paper

  8. Asymptotic properties of the weighted average least squares (WALS) estimator. (2022). Peracchi, Franco ; Magnus, Jan ; de Luca, Giuseppe.
    In: Tinbergen Institute Discussion Papers.
    RePEc:tin:wpaper:20220022.

    Full description at Econpapers || Download paper

  9. JAQ of All Trades: Job Mismatch, Firm Productivity and Managerial Quality. (2022). Tg, Joacim ; Scognamiglio, Annalisa ; Pagano, Marco ; Coraggio, Luca.
    In: Working Paper Series.
    RePEc:hhs:iuiwop:1427.

    Full description at Econpapers || Download paper

  10. JAQ of All Trades: Job Mismatch, Firm Productivity and Managerial Quality. (2022). Scognamiglio, Annalisa ; Pagano, Marco ; Tg, Joacim ; Coraggio, Luca.
    In: EIEF Working Papers Series.
    RePEc:eie:wpaper:2205.

    Full description at Econpapers || Download paper

  11. Asymptotic properties of the weighted-average least squares (WALS) estimator. (2022). De Luca, Giuseppe ; Peracchi, Franco ; Magnus, Jan R.
    In: EIEF Working Papers Series.
    RePEc:eie:wpaper:2203.

    Full description at Econpapers || Download paper

  12. .

    Full description at Econpapers || Download paper

  13. .

    Full description at Econpapers || Download paper

  14. Economic Predictions With Big Data: The Illusion of Sparsity. (2021). Giannone, Domenico ; Primiceri, Giorgio E ; Lenza, Michele.
    In: Econometrica.
    RePEc:wly:emetrp:v:89:y:2021:i:5:p:2409-2437.

    Full description at Econpapers || Download paper

  15. A Model of Scientific Communication. (2021). Shapiro, Jesse ; Andrews, Isaiah.
    In: Econometrica.
    RePEc:wly:emetrp:v:89:y:2021:i:5:p:2117-2142.

    Full description at Econpapers || Download paper

  16. A Nonparametric Method for Estimating Teacher Value-Added. (2021). Gu, Jiaying ; Gilraine, Michael ; McMillan, Robert.
    In: Working Papers.
    RePEc:tor:tecipa:tecipa-689.

    Full description at Econpapers || Download paper

  17. Is It Possible to Forecast the Price of Bitcoin?. (2021). Goutte, Stephane ; Guegan, Dominique ; Chevallier, Julien.
    In: Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers).
    RePEc:hal:cesptp:halshs-04250269.

    Full description at Econpapers || Download paper

  18. Is It Possible to Forecast the Price of Bitcoin?. (2021). Goutte, Stéphane ; Chevallier, Julien ; Guegan, Dominique.
    In: Forecasting.
    RePEc:gam:jforec:v:3:y:2021:i:2:p:24-420:d:564101.

    Full description at Econpapers || Download paper

  19. Market stability with machine learning agents. (2021). Georges, Christophre ; Pereira, Javier.
    In: Journal of Economic Dynamics and Control.
    RePEc:eee:dyncon:v:122:y:2021:i:c:s0165188920302001.

    Full description at Econpapers || Download paper

  20. Targeting humanitarian aid using administrative data: Model design and validation. (2021). O'Connell, Stephen ; Jerneck, Matilda ; Cadoni, Paola ; Balciolu, Zeynep ; Amaz, Aytu ; Altinda, Onur ; Foong, Aimee Kunze.
    In: Journal of Development Economics.
    RePEc:eee:deveco:v:148:y:2021:i:c:s0304387820301395.

    Full description at Econpapers || Download paper

  21. Economic predictions with big data: the illusion of sparsity. (2021). Giannone, Domenico ; Primiceri, Giorgio E ; Lenza, Michele.
    In: Working Paper Series.
    RePEc:ecb:ecbwps:20212542.

    Full description at Econpapers || Download paper

  22. Social capital determinants and labor market networks. (2021). Kutzbach, Mark ; Asquith, Brian ; Hellerstein, Judith K ; Neumark, David.
    In: Journal of Regional Science.
    RePEc:bla:jregsc:v:61:y:2021:i:1:p:212-260.

    Full description at Econpapers || Download paper

  23. A New Method for Estimating Teacher Value-Added. (2020). McMillan, Robert ; Gu, Jiaying ; Gilraine, Michael.
    In: NBER Working Papers.
    RePEc:nbr:nberwo:27094.

    Full description at Econpapers || Download paper

  24. A Model of Scientific Communication. (2020). Shapiro, Jesse ; Andrews, Isaiah.
    In: NBER Working Papers.
    RePEc:nbr:nberwo:26824.

    Full description at Econpapers || Download paper

  25. Targeting humanitarian aid using administrative data: model design and validation. (2020). Cadoni, Paola ; Balciolu, Zeynep ; Amaz, Aytu ; O'Connell, Stephen D ; Altinda, Onur ; Foong, Aimee Kunze ; Jerneck, Matilda.
    In: HiCN Working Papers.
    RePEc:hic:wpaper:327.

    Full description at Econpapers || Download paper

  26. How is Machine Learning Useful for Macroeconomic Forecasting?. (2020). Stevanovic, Dalibor ; Surprenant, St'Ephane ; Leroux, Maxime ; Coulombe, Philippe Goulet.
    In: Papers.
    RePEc:arx:papers:2008.12477.

    Full description at Econpapers || Download paper

  27. .

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-01-15 20:44:22 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.