Abadie, A.; Kasy, M. Choosing among regularized estimators in empirical economics: The risk of machine learning. Rev. Econ. Stat. 2019, 101, 743â762. [CrossRef]
- Abedifar, P.; Giudici, P.; Hashem, S.Q. Heterogeneous market structure and systemic risk: Evidence from dual banking systems. J. Financ. Stab. 2017, 33, 96â119. [CrossRef]
Paper not yet in RePEc: Add citation now
Abraham, L.; Guegan, D. The other side of the Coin: Risks of the Libra Blockchain. arXiv 2019, arXiv:1910.07775.
Ahelegbey, D.F.; Billio, M.; Casarin, R. Bayesian graphical models for structural vector autoregressive processes. J. Appl. Econom. 2016, 31, 357â386. [CrossRef]
Akyildirim, E.; Goncu, A.; Sensoy, A. Prediction of cryptocurrency returns using machine learning. Ann. Oper. Res. 2021, 297, 3â36. [CrossRef]
Alexander, C.; Choi, J.; Park, H.; Sohn, S. BitMEX bitcoin derivatives: Price discovery, informational efficiency, and hedging effectiveness. J. Futur. Mark. 2020, 40, 23â43. [CrossRef]
Alvarez-Ramirez, J.; Rodriguez, E.; Ibarra-Valdez, C. Long-range correlations and asymmetry in the Bitcoin market. Phys. A Stat. Mech. Appl. 2018, 492, 948â955. [CrossRef]
Aslanidis, N.; Bariviera, A.F.; MartÃnez-Ibañez, O. An analysis of cryptocurrencies conditional cross correlations. Financ. Res. Lett. 2019, 31, 130â137. [CrossRef]
- Athey, S.; Imbens, G.W. Machine learning methods that economists should know about. Annu. Rev. Econ. 2019, 11, 685â725. [CrossRef]
Paper not yet in RePEc: Add citation now
Atsalakis, G.S.; Atsalaki, I.G.; Pasiouras, F.; Zopounidis, C. Bitcoin price forecasting with neuro-fuzzy techniques. Eur. J. Oper. Res. 2019, 276, 770â780. [CrossRef]
- Bariviera, A.F.; Basgall, M.J.; Hasperué, W.; Naiouf, M. Some stylized facts of the Bitcoin market. Phys. A Stat. Mech. Appl. 2017, 484, 82â90. [CrossRef]
Paper not yet in RePEc: Add citation now
- Baumöhl, E. Are cryptocurrencies connected to forex? A quantile cross-spectral approach. Financ. Res. Lett. 2019, 29, 363â372. [CrossRef]
Paper not yet in RePEc: Add citation now
Baur, D.G.; Dimpfl, T. Price discovery in bitcoin spot or futures? J. Futur. Mark. 2019, 39, 803â817. [CrossRef]
BeguÅ¡icÌ, S.; KostanjcÌar, Z.; Stanley, H.E.; Podobnik, B. Scaling properties of extreme price fluctuations in Bitcoin markets. Phys. A Stat. Mech. Appl. 2018, 510, 400â406. [CrossRef]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063â1095.
Paper not yet in RePEc: Add citation now
- Billio, M.; Getmansky, M.; Lo, A.W.; Pelizzon, L. Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J. Financ. Econ. 2012, 104, 535â559. [CrossRef] Forecasting 2021, 3 417
Paper not yet in RePEc: Add citation now
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [CrossRef]
Paper not yet in RePEc: Add citation now
Bouri, E.; Molnár, P.; Azzi, G.; Roubaud, D.; Hagfors, L.I. On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Financ. Res. Lett. 2017, 20, 192â198. [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123â140. [CrossRef] Forecasting 2021, 3 419
Paper not yet in RePEc: Add citation now
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5â32. [CrossRef]
Paper not yet in RePEc: Add citation now
Briere, M.; Oosterlinck, K.; Szafarz, A. Virtual currency, tangible return: Portfolio diversification with bitcoin. J. Asset Manag. 2015, 16, 365â373. [CrossRef]
- Busa-Fekete, R.; Kégl, B.; ÃltetoÌ, T.; Szarvas, G. A robust ranking methodology based on diverse calibration of AdaBoost. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, Greece, 5â9 September 2011; pp. 263â279.
Paper not yet in RePEc: Add citation now
- Bussmann, N.; Giudici, P.; Marinelli, D.; Papenbrock, J. Explainable machine learning in credit risk management. Comput. Econ. 2021, 57, 203â216. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cao, L.; Gu, Q. Dynamic support vector machines for non-stationary time series forecasting. Intell. Data Anal. 2002, 6, 67â83. [CrossRef]
Paper not yet in RePEc: Add citation now
Caporale, G.M.; Zekokh, T. Modelling volatility of cryptocurrencies using Markov-Switching GARCH models. Res. Int. Bus. Financ. 2019, 48, 143â155. [CrossRef]
Chen, T.H.; Chen, M.Y.; Du, G.T. The determinants of bitcoinâs price: Utilization of GARCH and machine learning approaches. Comput. Econ. 2021, 57, 267â280. [CrossRef]
Cheng, S.F.; De Franco, G.; Jiang, H.; Lin, P. Riding the blockchain mania: public firmsâ speculative 8-K disclosures. Manag. Sci. 2019, 65, 5901â5913.
- Clauset, A.; Newman, M.E.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cohen, G. Forecasting Bitcoin Trends Using Algorithmic Learning Systems. Entropy 2020, 22, 838. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Dahir, A.M.; Mahat, F.; Noordin, B.A.A.; Ab Razak, N.H. Dynamic connectedness between Bitcoin and equity market information across BRICS countries: Evidence from TVP-VAR connectedness approach. Int. J. Manag. Financ. 2019, 16, 357â371. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dasarathy, B.V.; Belur, S. A composite classifier system design: Concepts and methodology. Proc. IEEE 1979, 67, 708â713. [CrossRef]
Paper not yet in RePEc: Add citation now
- De Prado, M.M.L. Machine Learning for Asset Managers; Cambridge University Press: Cambridge, UK, 2020.
Paper not yet in RePEc: Add citation now
- Dey, A.K.; Akcora, C.G.; Gel, Y.R.; Kantarcioglu, M. On the role of local blockchain network features in cryptocurrency price formation. Can. J. Stat. 2020, 48, 561â581. [CrossRef]
Paper not yet in RePEc: Add citation now
Dyhrberg, A.H. Hedging capabilities of bitcoin. Is it the virtual gold? Financ. Res. Lett. 2016, 16, 139â144. [CrossRef] Forecasting 2021, 3 418
Easley, D.; OâHara, M.; Basu, S. From mining to markets: The evolution of bitcoin transaction fees. J. Financ. Econ. 2019, 134, 91â109. [CrossRef]
Entrop, O.; Frijns, B.; Seruset, M. The Determinants of Price Discovery on Bitcoin Markets. J. Futur. Mark. 2020, 40, 816â837. [CrossRef]
- Epprecht, C.; Guegan, D.; Veiga, . Comparing Variable Selection Techniques for Linear Regression: Lasso and Autometrics; Centre Dâéconomie de la Sorbonne: Paris, France, 2013.
Paper not yet in RePEc: Add citation now
Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348â1360. [CrossRef]
- Fang, L.; Bouri, E.; Gupta, R.; Roubaud, D. Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin? Int. Rev. Financ. Anal. 2019, 61, 29â36. [CrossRef]
Paper not yet in RePEc: Add citation now
Fantazzini, D.; Nigmatullin, E.; Sukhanovskaya, V.; Ivliev, S. Everything You Always Wanted to Know about Bitcoin Modelling but Were Afraid to Ask; MPRA Paper No. 71946; MPRA: Munich, Germany, 2016; 50p.
Farrell, M.H.; Liang, T.; Misra, S. Deep neural networks for estimation and inference. Econometrica 2021, 89, 181â213. [CrossRef]
Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2018, 270, 654â669. [CrossRef]
Foley, S.; Karlsen, J.R.; Putnin , Å¡, T.J. Sex, drugs, and bitcoin: How much illegal activity is financed through cryptocurrencies? Rev. Financ. Stud. 2019, 32, 1798â1853. [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer: New York, NY, USA, 2001; Volume 1, Number 10.
Paper not yet in RePEc: Add citation now
- Friedman, J.H.; Baskett, F.; Shustek, L.J. An algorithm for finding nearest neighbors. IEEE Trans. Comput. 1975, 100, 1000â1006. [CrossRef]
Paper not yet in RePEc: Add citation now
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225â2236. [CrossRef]
Paper not yet in RePEc: Add citation now
Geuder, J.; Kinateder, H.; Wagner, N.F. Cryptocurrencies as financial bubbles: The case of Bitcoin. Financ. Res. Lett. 2019, 31, 179â184 [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3â42. [CrossRef]
Paper not yet in RePEc: Add citation now
Gillaizeau, M.; Jayasekera, R.; Maaitah, A.; Mishra, T.; Parhi, M.; Volokitina, E. Giver and the receiver: Understanding spillover effects and predictive power in cross-market Bitcoin prices. Int. Rev. Financ. Anal. 2019, 63, 86â104. [CrossRef]
Giudici, P.; Polinesi, G. Crypto price discovery through correlation networks. Ann. Oper. Res. 2021, 299, 443â457. [CrossRef]
Griffin, J.M.; Shams, A. Is Bitcoin really untethered? J. Financ. 2020, 75, 1913â1964. [CrossRef]
- Guégan, D.; Renault, T. Does investor sentiment on social media provide robust information for Bitcoin returns predictability? Financ. Res. Lett. 2021, 38, 101494. [CrossRef]
Paper not yet in RePEc: Add citation now
- Guegan, D.; Frunza, M. Is the Bitcoin Rush Over? In Handbook: Cryptofinance and Mechanism of Exchange; Springer: Berlin, Germany, 2018.
Paper not yet in RePEc: Add citation now
Guesmi, K.; Saadi, S.; Abid, I.; Ftiti, Z. Portfolio diversification with virtual currency: Evidence from bitcoin. Int. Rev. Financ. Anal. 2019, 63, 431â437. [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009.
Paper not yet in RePEc: Add citation now
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504â507. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832â844.
Paper not yet in RePEc: Add citation now
Hudson, R.; Urquhart, A. Technical trading and cryptocurrencies. Ann. Oper. Res. 2021, 297, 191â220. [CrossRef]
- Islam, S.R.; Eberle, W.; Bundy, S.; Ghafoor, S.K. Infusing domain knowledge in ai-based âblack boxâ models for better explainability with application in bankruptcy prediction. arXiv 2019, arXiv:1905.11474.
Paper not yet in RePEc: Add citation now
- Iworiso, J.; Vrontos, S. On the Directional Predictability of Equity Premium Using Machine Learning Techniques. J. Forecast. 2020, 39, 449â469. [CrossRef]
Paper not yet in RePEc: Add citation now
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112.
Paper not yet in RePEc: Add citation now
- Jang, H.; Lee, J. An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information. IEEE Access 2017, 6, 5427â5437. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jay, P.; Kalariya, V.; Parmar, P.; Tanwar, S.; Kumar, N.; Alazab, M. Stochastic neural networks for cryptocurrency price prediction. IEEE Access 2020, 8, 82804â82818. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ji, Q.; Bouri, E.; Kristoufek, L.; Lucey, B. Realised volatility connectedness among Bitcoin exchange markets. Financ. Res. Lett. 2019, 38, 101391. [CrossRef]
Paper not yet in RePEc: Add citation now
Kapar, B.; Olmo, J. An analysis of price discovery between Bitcoin futures and spot markets. Econ. Lett. 2019, 174, 62â64. [CrossRef]
- Khuntia, S.; Pattanayak, J. Adaptive long memory in volatility of intra-day bitcoin returns and the impact of trading volume. Financ. Res. Lett. 2020, 32, 101077. [CrossRef]
Paper not yet in RePEc: Add citation now
Klein, T.; Thu, H.P.; Walther, T. Bitcoin is not the New GoldâA comparison of volatility, correlation, and portfolio performance. Int. Rev. Financ. Anal. 2018, 59, 105â116. [CrossRef]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464â1480. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kraken, I.R.D. Born to Run: December 2020 Market Recap & Outlook; Technical Report; Ordo AB Crypto, Blockchain Consulting & Cryptocurrency Financial Services Information: San Francisco, CA, USA, 2020.
Paper not yet in RePEc: Add citation now
- Kurbatsky, V.G.; Sidorov, D.N.; Spiryaev, V.A.; Tomin, N.V. Forecasting nonstationary time series based on Hilbert-Huang transform and machine learning. Autom. Remote. Control 2014, 75, 922â934. [CrossRef]
Paper not yet in RePEc: Add citation now
Kurka, J. Do cryptocurrencies and traditional asset classes influence each other? Financ. Res. Lett. 2019, 31, 38â46. [CrossRef]
- Lambiotte, R.; Delvenne, J.C.; Barahona, M. Laplacian dynamics and multiscale modular structure in networks. arXiv 2008, arXiv:0812.1770.
Paper not yet in RePEc: Add citation now
- Le, T.L.; Abakah, E.J.A.; Tiwari, A.K. Time and frequency domain connectedness and spill-over among fintech, green bonds and cryptocurrencies in the age of the fourth industrial revolution. Technol. Forecast. Soc. Chang. 2021, 162, 120382. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Li, Y.; Zheng, Z.; Dai, H.N. Enhancing Bitcoin Price Fluctuation Prediction Using Attentive LSTM and Embedding Network. Appl. Sci. 2020, 10, 4872. [CrossRef]
Paper not yet in RePEc: Add citation now
- Livieris, I.E.; Kiriakidou, N.; Stavroyiannis, S.; Pintelas, P. An Advanced CNN-LSTM Model for Cryptocurrency Forecasting. Electronics 2021, 10, 287. [CrossRef]
Paper not yet in RePEc: Add citation now
- Maaten, L.v.d.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579â2605.
Paper not yet in RePEc: Add citation now
- Maclin, R.; Shavlik, J.W. Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. IJCAI 1995, 95, 524â531.
Paper not yet in RePEc: Add citation now
Makarov, I.; Schoar, A. Trading and arbitrage in cryptocurrency markets. J. Financ. Econ. 2020, 135, 293â319. [CrossRef]
- Mallqui, D.C.; Fernandes, R.A. Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques. Appl. Soft Comput. 2019, 75, 596â606. [CrossRef]
Paper not yet in RePEc: Add citation now
- Maudes, J.; RodrÃguez, J.J.; GarcÃa-Osorio, C.; GarcÃa-Pedrajas, N. Random feature weights for decision tree ensemble construction. Inf. Fusion 2012, 13, 20â30. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mensi, W.; Al-Yahyaee, K.H.; Kang, S.H. Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Financ. Res. Lett. 2019, 29, 222â230. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mensi, W.; Sensoy, A.; Aslan, A.; Kang, S.H. High-frequency asymmetric volatility connectedness between Bitcoin and major precious metals markets. N. Am. J. Econ. Financ. 2019, 50, 101031. [CrossRef]
Paper not yet in RePEc: Add citation now
- Misheva, B.H.; Osterrieder, J.; Hirsa, A.; Kulkarni, O.; Lin, S.F. Explainable AI in Credit Risk Management. arXiv 2021, arXiv:2103.00949.
Paper not yet in RePEc: Add citation now
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; White Paper; Bitcoin.org: New York, NY, USA 2009.
Paper not yet in RePEc: Add citation now
Nakano, M.; Takahashi, A.; Takahashi, S. Bitcoin technical trading with artificial neural network. Phys. A Stat. Mech. Appl. 2018, 510, 587â609. [CrossRef]
- Nicola, G.; Cerchiello, P.; Aste, T. Information network modeling for US banking systemic risk. Entropy 2020, 22, 1331. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pagnotta, E. Decentralizing Money: Bitcoin Prices and Blockchain Security. Rev. Financ. Stud. 2020. [CrossRef]
Paper not yet in RePEc: Add citation now
- Papadopoulos, A.N.; Manolopoulos, Y. Nearest Neighbor Search: A Database Perspective; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006.
Paper not yet in RePEc: Add citation now
- Philippas, D.; Rjiba, H.; Guesmi, K.; Goutte, S. Media attention and Bitcoin prices. Financ. Res. Lett. 2019, 30, 37â43. [CrossRef]
Paper not yet in RePEc: Add citation now
- Phillip, A.; Chan, J.; Peiris, S. On long memory effects in the volatility measure of Cryptocurrencies. Financ. Res. Lett. 2019, 28, 95â100. [CrossRef]
Paper not yet in RePEc: Add citation now
- Polasik, M.; Piotrowska, A.I.; Wisniewski, T.P.; Kotkowski, R.; Lightfoot, G. Price fluctuations and the use of Bitcoin: An empirical inquiry. Int. J. Electron. Commer. 2015, 20, 9â49. [CrossRef]
Paper not yet in RePEc: Add citation now
Prat, J.; Walter, B. An equilibrium model of the market for bitcoin mining. J. Political Econ. 2021. [CrossRef]
- Reuters. Bitcoin Hits $1 Trillion Market Cap, Surges to Fresh All-Time Peak. Technical Report. Available online: https: //www.reuters.com/article/us-crypto-currency-bitcoin-idUSKBN2AJ0GC (accessed on 19 February 2021).
Paper not yet in RePEc: Add citation now
- Ridgeway, G.; Madigan, D.; Richardson, T. Boosting methodology for regression problems. In Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 3â6 January 1999.
Paper not yet in RePEc: Add citation now
- Riedwyl, H.; Schüpbach, M. Parquet diagram to plot contingency tables. Softstat 1994, 93, 293â299.
Paper not yet in RePEc: Add citation now
- Rosenblatt, F. Perceptron simulation experiments. Proc. IRE 1960, 48, 301â309. [CrossRef]
Paper not yet in RePEc: Add citation now
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson Education Limited: Kuala Lumpur, Malaysia, 2016.
Paper not yet in RePEc: Add citation now
- Saad, M.; Choi, J.; Nyang, D.; Kim, J.; Mohaisen, A. Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions. IEEE Syst. J. 2019, 14, 321â332. [CrossRef] Forecasting 2021, 3 420
Paper not yet in RePEc: Add citation now
- Schapire, R.E. Explaining adaboost. In Empirical Inference; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37â52.
Paper not yet in RePEc: Add citation now
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85â117. [CrossRef]
Paper not yet in RePEc: Add citation now
- Scholkopf, B. Support vector machines: a practical consequence of learning theory. IEEE Intell. Syst. 1998, 13, 4.
Paper not yet in RePEc: Add citation now
Selmi, R.; Mensi, W.; Hammoudeh, S.; Bouoiyour, J. Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold. Energy Econ. 2018, 74, 787â801. [CrossRef]
Shen, D.; Urquhart, A.; Wang, P. Does twitter predict Bitcoin? Econ. Lett. 2019, 174, 118â122. [CrossRef]
- Shynkevich, A. Bitcoin Futures, Technical Analysis and Return Predictability in Bitcoin Prices. J. Forecast. 2020. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sorjamaa, A.; Hao, J.; Reyhani, N.; Ji, Y.; Lendasse, A. Methodology for long-term prediction of time series. Neurocomputing 2007, 70, 2861â2869. [CrossRef]
Paper not yet in RePEc: Add citation now
- Su, C.W.; Li, Z.Z.; Tao, R.; Si, D.K. Testing for Multiple Bubbles in Bitcoin Markets: A. Econ. Bull. 2017, 36, 843â850.
Paper not yet in RePEc: Add citation now
Sun, X.; Liu, M.; Sima, Z. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. Lett. 2020, 32,
Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2011, 73, 273â282. [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267â288. [CrossRef]
Paper not yet in RePEc: Add citation now
- Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221â3245.
Paper not yet in RePEc: Add citation now
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988â999. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Wang, X.; Han, M. Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 2014, 145, 90â97. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wei, Y.; Dukes, A. Cryptocurrency Adoption with Speculative Price Bubbles. Mark. Sci. 2021, 40, 241â260. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wickelmaier, F. An Introduction to MDS; Sound Quality Research Unit, Aalborg University: Aalborg Ãst, Denmark, 2003; Volume 46, pp. 1â26.
Paper not yet in RePEc: Add citation now
- Windisch, D. Loading deep networks is hard: The pyramidal case. Neural Comput. 2005, 17, 487â502. [CrossRef]
Paper not yet in RePEc: Add citation now
- WoÅk, K. Advanced social media sentiment analysis for short-term cryptocurrency price prediction. Expert Syst. 2020, 37, e12493. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ying, C.; Qi-Guang, M.; Jia-Chen, L.; Lin, G. Advance and prospects of AdaBoost algorithm. Acta Autom. Sin. 2013, 39, 745â758.
Paper not yet in RePEc: Add citation now
- Zargar, F.N.; Kumar, D. Informational inefficiency of Bitcoin: A study based on high-frequency data. Res. Int. Bus. Financ. 2019, 47, 344â353. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhao, P.; Yu, B. On model selection consistency of Lasso. J. Mach. Learn. Res. 2006, 7, 2541â2563.
Paper not yet in RePEc: Add citation now
- Zhao, Q.; Hastie, T. Causal interpretations of black-box models. J. Bus. Econ. Stat. 2021, 39, 272â281. [CrossRef]
Paper not yet in RePEc: Add citation now
Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418â1429. [CrossRef]
Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301â320. [CrossRef]