- Akesson, M., Singh, P., Wrede, F., & Hellander, A. (2021). Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(8).
Paper not yet in RePEc: Add citation now
- Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
Paper not yet in RePEc: Add citation now
Barndorï¬-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2009). Realized kernels in practice: Trades and quotes. Econometrics Journal, 12(3).
- Blum, M. G., & François, O. (2010). Non-linear regression models for Approximate Bayesian Computation. Statistics and Computing, 20(1), 63â73.
Paper not yet in RePEc: Add citation now
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307â327.
Bucci, A. (2020). Realized Volatility Forecasting with Neural Networks. Journal of Financial Econometrics, 18(3), 502â531.
- Calin, O. (2020). Deep Learning Architectures: A Mathematical Approach. Springer International Publishing.
Paper not yet in RePEc: Add citation now
Carrasco, M. (2012). A regularization approach to the many instruments problem. Journal of Econometrics, 170(2), 383â398.
Cheng, X., & Liao, Z. (2015). Select the valid and relevant moments: An information-based LASSO for GMM with many moments. Journal of Econometrics, 186(2), 443â464.
Chernozhukov, V., & Hong, H. (2003). An MCMC approach to classical estimation. Journal of Econometrics, 115(2), 293â346.
- Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv:1412.3555, 1â 9. Creel, M. (2017). Neural nets for indirect inference. Econometrics and Statistics, 2, 36â49. Michael Creel acknowledges ï¬nancial support from the Spanish Ministry of Science, Innovation and Universities and FEDER through grant PGC2018-094364-B-100 and from the Spanish Agencia Estatal de Investigación (AEI), through the Severo Ochoa Programme for Centres of Excellence in R&D (Barcelona School of Economics CEX2019-000915-S).
Paper not yet in RePEc: Add citation now
Creel, M. (2021). Inference using simulated neural moments. Econometrics, 9(4), 1â15.
DiTraglia, F. J. (2016). Using invalid instruments on purpose: Focused moment selection and averaging for GMM. Journal of Econometrics, 195(2), 187â208.
Donald, S. G., Imbens, G. W., & Newey, W. K. (2009). Choosing instrumental variables in conditional moment restriction models. Journal of Econometrics, 152(1), 28â36.
Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inï¬ation. Econometrica, 50(4), 987â1007.
Farrell, M. H., Liang, T., & Misra, S. (2021). Deep Neural Networks for Estimation and Inference. Econometrica, 89(1), 181â213.
- Fisher, T., Luedtke, A., Carone, M., & Simon, N. (2020). Deep Learning for Marginal Bayesian Posterior Inference with Recurrent Neural Networks.
Paper not yet in RePEc: Add citation now
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.
Paper not yet in RePEc: Add citation now
Gouriéroux, C., & Monfort, A. (1997). Simulation-based econometric methods. Oxford University Press.
- Gourieroux, C., Monfort, A., & Renault, E. (1993). Indirect Inference. Journal of Applied Econometrics, 8.
Paper not yet in RePEc: Add citation now
- Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings.
Paper not yet in RePEc: Add citation now
- Grazian, C., & Fan, Y. (2020). A review of approximate Bayesian computation methods via density estimation: Inference for simulator-models. Wiley Interdisciplinary Reviews: Computational Statistics, 12(4), 1â16.
Paper not yet in RePEc: Add citation now
Hall, A. R. (2015). Econometricians Have Their Moments: GMM at 32. Economic Record, 91(S1), 1â24.
Hansen, L. P. (1982). Large Sample Properties of Generalized Method of Moments Estimators.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770â 778.
Paper not yet in RePEc: Add citation now
- Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735â1780.
Paper not yet in RePEc: Add citation now
- Ioï¬e, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. International conference on machine learning, 1, 448â456.
Paper not yet in RePEc: Add citation now
- Jiang, B., Wu, T. Y., Zheng, C., & Wong, W. H. (2017). Learning summary statistic for approximate Bayesian computation via deep neural network. Statistica Sinica, 27(4), 1595â1618.
Paper not yet in RePEc: Add citation now
- Jiang, W., & Turnbull, B. (2004). The indirect method: Inference based on intermediate statistics-a synthesis and examples. Statistical Science, 19(2), 239â263.
Paper not yet in RePEc: Add citation now
Kim, J. Y. (2002). Limited information likelihood and Bayesian analysis. Journal of Econometrics, 107(1-2), 175â193.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classiï¬cation with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25.
Paper not yet in RePEc: Add citation now
- Kwan, Y. K. (1999). Asymptotic Bayesian analysis based on a limited information estimator. Journal of Econometrics, 88(1), 99â121.
Paper not yet in RePEc: Add citation now
McFadden, D. (1989). A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration. Econometrica, 57(5), 995â1026.
Pakes, A., & Pollard, D. (1989). Simulation and the Asymptotics of Optimization Estimators.
- Rackaukas, C., & Nie, Q. (2017). Diï¬erentialEquations.jl - a performant and feature-rich ecosystem for solving diï¬erential equations in Julia. Journal of Open Research Software, 5. Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks. Advances in Neural Information Processing Systems, 901â909.
Paper not yet in RePEc: Add citation now
- Sisson, S. A., Fan, Y., & Beaumont, M. (Eds.). (2018). Handbook of Approximate Bayesian Computation. Taylor & Francis.
Paper not yet in RePEc: Add citation now
Smith, A. A. (1993). Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions. Journal of Applied Econometrics, 8, 63â84.
- Sobolâ, I. M. (1967). On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4), 86â 112.
Paper not yet in RePEc: Add citation now
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overï¬tting. Journal of Machine Learning Research, 15, 1929â1958.
Paper not yet in RePEc: Add citation now
- Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27.
Paper not yet in RePEc: Add citation now
- van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw Audio. arXiv preprint arXiv:1609.03499.
Paper not yet in RePEc: Add citation now
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 2017-Decem(Nips), 5999â6009.
Paper not yet in RePEc: Add citation now
- Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. Proceedings of the IEEE conference on computer vision and pattern recognition, 3156â3164.
Paper not yet in RePEc: Add citation now
- Wiqvist, S., Mattei, P. A., Picchini, U., & Frellsen, J. (2019). Partially exchangeable networks and architectures for learning summary statistics in approximate Bayesian computation. International Conference on Machine Learning, 6798â6807. A Hyperparameter Tuning TCN LSTM Hyperparameter Chosen values Candidate values Mini-batch size 1 024 1 024 32, 64, 128, 256, 512, 1 024, 2 048 Optimizer AdamW AdamW Adam, AdamW, RMSProp, AdaGrad Learning rate 10â3 10â3 5 10â3 , 10â3 , 5 10â4 , 10â4 TCN-speciï¬c Channels 32 2, 4, 8, 16, 32, 64 Dilation factor 2 2, 4, 8, 16 Kernel width 32 2, 4, 8, 16, 32, 64 Residual connection True False, True LSTM-speciï¬c LSTM Layers 2 1, 2, 3 Nodes 32 8, 16, 32, 64
Paper not yet in RePEc: Add citation now