- Aghabozorgi, S., A. S. Shirkhorshidi, and T. Y. Wah (2015). Time-series clustering–a decade review. Information systems 53, 16–38.
Paper not yet in RePEc: Add citation now
Andersen, T. G., T. Bollerslev, and F. X. Diebold (2007). Roughing it up: Including jump components in the measurement, modeling and forecasting of return volatility. Review of Economics and Statistics 89, 701–720.
- Andersen, T. G., T. Bollerslev, and F. X. Diebold (2010). Parametric and nonparametric volatility measurement. In Handbook of financial econometrics: Tools and techniques, pp. 67–137. Elsevier.
Paper not yet in RePEc: Add citation now
Andersen, T. G., T. Bollerslev, F. X. Diebold, and C. Vega (2007). Real-time price discovery in global stock, bond and foreign exchange markets. Journal of International Economics 73(2), 251–277.
Anderson, T. G., T. Bollerslev, F. X. Diebold, and C. Vega (2003). Micro effects of macro announcements: Real-time price discovery in foreign exchange. American Economic Review 93(1), 38–62.
- Barndorff-Nielsen, O. and N. Shephard (2004a). Power and bipower variation with stochastic volatility and jumps (with discussion). Journal of Financial Econometrics 2, 1–48.
Paper not yet in RePEc: Add citation now
- Barndorff-Nielsen, O. E. and N. Shephard (2004b). How accurate is the asymptotic approximation to the distribution of realized variance. Identification and inference for econometric models. A Festschrift in honour of TJ Rothenberg, 306–311.
Paper not yet in RePEc: Add citation now
Barndorff-Nielsen, O. E. and N. Shephard (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics 4, 1–30.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307–327.
Bomfim, A. N. (2003). Pre-announcement effects, news effects, and volatility: monetary policy and the stock market. Journal of Banking & Finance 27(1), 133–151.
Brownlees, C. T. and G. M. Gallo (2006). Financial econometric analysis at ultra–high frequency: Data handling concerns. Computational Statistics and Data Analysis 51, 2232–2245.
- Brownlees, C. T., F. Cipollini, and G. M. Gallo (2012). Multiplicative error models. In L. Bauwens, C. Hafner, and S. Laurent (Eds.), Volatility Models and Their Applications, pp. 223–247. Wiley.
Paper not yet in RePEc: Add citation now
Busch, T., B. J. Christensen, and M. Ø. Nielsen (2011). The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets. Journal of Econometrics 160(1), 48–57.
- Caiado, J. and N. Crato (2007). A GARCH-based method for clustering of financial time series: International stock markets evidence. In Recent advances in stochastic modeling and data analysis, pp. 542–551. World Scientific.
Paper not yet in RePEc: Add citation now
- Caporin, M., E. Rossi, and P. Santucci De Magistris (2017). Chasing volatility: a persistent multiplicative error model with jumps. Journal of Econometrics 198, 122–145.
Paper not yet in RePEc: Add citation now
- Cipollini, F. and G. M. Gallo (2022, may). Multiplicative error models: 20 years on. Econometrics and Statistics.
Paper not yet in RePEc: Add citation now
Cipollini, F., G. M. Gallo, and A. Palandri (2020). Realized variance modeling: decoupling forecasting from estimation. Journal of Financial Econometrics 18(3), 532–555.
Cipollini, F., G. M. Gallo, and E. Otranto (2021). Realized volatility forecasting: Robustness to measurement errors. International Journal of Forecasting 37(1), 44 – 57.
Cipollini, F., R. F. Engle, and G. M. Gallo (2013). Semiparametric vector MEM. Journal of Applied Econometrics 28, 1067–1086.
Cukierman, A. (1986). Central bank behavior and credibility: some recent theoretical developments. Federal Reserve Bank of St. Louis Review 68(5), 5–17.
De Luca, G. and P. Zuccolotto (2011). A tail dependence-based dissimilarity measure for financial time series clustering. Advances in data analysis and classification 5, 323–340.
- Dette, H., V. Golosnoy, and J. Kellermann (2022). The effect of intraday periodicity on realized volatility measures. Metrika, 1–28.
Paper not yet in RePEc: Add citation now
Engle, R. F. (2002). New frontiers for ARCH models. Journal of Applied Econometrics 17, 425–446.
Engle, R. F. and G. J. Lee (1999). A permanent and transitory component model of stock return volatility. In R. F. Engle and H. White (Eds.), Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive W. J. Granger, pp. 475–497. Oxford University Press, Oxford.
Engle, R. F. and G. M. Gallo (2006). A multiple indicators model for volatility using intra-daily data. Journal of Econometrics 131, 3–27.
Engle, R. F. and J. R. Russell (1998). Autoregressive conditional duration: A new model for irregularly spaced transaction data. Econometrica 66, 1127–62.
Forsberg, L. and E. Ghysels (2007). Why do absolute returns predict volatility so well? Journal of Financial Econometrics 5, 31–67.
Gallo, G. M., D. Lacava, and E. Otranto (2021). On classifying the effects of policy announcements on volatility. International Journal of Approximate Reasoning 134, 23–33.
Hattori, M., A. Schrimpf, and V. Sushko (2016, April). The response of tail risk perceptions to unconventional monetary policy. American Economic Journal: Macroeconomics 8(2), 111–36.
Huang, X. and G. Tauchen (2005). The relative contribution of jumps to total price variance. Journal of financial econometrics 3(4), 456–499.
Hubert, L. and P. Arabie (1985). Comparing partitions. Journal of classification 2, 193–218.
Johannes, M. (2004). The statistical and economic role of jumps in continuous-time interest rate models. The Journal of Finance 59(1), 227–260.
Joyce, M., A. Lasaosa, I. Stevens, M. Tong, et al. (2011). The financial market impact of quantitative easing in the UK. International Journal of Central Banking 7(3), 113–161.
- Liao, T. W. (2005). Clustering of time series data—a survey. Pattern recognition 38(11), 1857–1874.
Paper not yet in RePEc: Add citation now
Liu, L. Y., A. J. Patton, and K. Sheppard (2015). Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics 187(1), 293–311.
- Maharaj, E. A., P. D’Urso, and J. Caiado (2019). Time series clustering and classification. Chapman and Hall/CRC.
Paper not yet in RePEc: Add citation now
McAleer, M. and M. Medeiros (2008). A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries. Journal of Econometrics 147, 104–119.
Otranto, E. (2008). Clustering heteroskedastic time series by model-based procedures. Computational Statistics & Data Analysis 52(10), 4685–4698.
Otranto, E. (2015). Capturing the spillover effect with multiplicative error models. Communications in Statistics-Theory and Methods 44(15), 3173–3191.
Patton, A. J. and K. Sheppard (2015). Good volatility, bad volatility: Signed jumps and the persistence of volatility. Review of Economics and Statistics 97(3), 683–697.
- Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association 66(336), 846–850.
Paper not yet in RePEc: Add citation now
- White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4), 817–38.
Paper not yet in RePEc: Add citation now
Wright, J. H. (2012). What does monetary policy do to long-term interest rates at the zero lower bound? The Economic Journal 122(564), F447–F466.