- A. Borodin and P. Salminen (2002). Handbook of Brownian motionâFacts and formulae (2nd ed.). Probability and its applications, BirkhaÌuser Verlag, Basel.
Paper not yet in RePEc: Add citation now
A. Millner and G. Heal (2018). Time consistency and time invariance in collective intertemporal choice. Journal of Economic Theory, 176: 158-169.
C. P. Chambers and F. Echenique (2018). On multiple discount rates. Econometrica, 86: 1325-1346.
- D. Ruiz-Antolin and J. Segura(2016). A new type of sharp bounds for ratios of modified Bessel functions.
Paper not yet in RePEc: Add citation now
E. Bayraktar, J. Zhang and Z. Zhou (2019). Time consistent stopping for the mean-standard deviation problem-the discrete time case. SIAM Journal on Financial Mathematics, 10(3): 667-697.
E. Bayraktar, J. Zhang and Z. Zhou (2021). Equilibrium concepts for time-inconsistent stopping problems in continuous time. Mathematical Finance, 31(1): 508-530.
E. Bayraktar, Z. Wang and Z. Zhou (2022). Equilibria of time-inconsistent stopping for one-dimensional diffusion processes. Preprint, arXiv:2201.07659.
E. Jouini, J. M. Marin and C. Napp (2010). Discounting and divergence of opinion. Journal of Economic Theory, 145: 830-859.
- J. Segura (2021). Monotonicity Properties for Ratios and Products of Modified Bessel. Functions and Sharp Trigonometric Bounds. Results in Mathematics, 76(221), 2021.
Paper not yet in RePEc: Add citation now
- K. F. Reinschmidt (2002). Aggregate social discount rate derived from individual discount rates. Management Science, 48(2): 307-312.
Paper not yet in RePEc: Add citation now
- M. L. Weitzman (2001). Gamma discounting. American Economic Review, 91(1): 260-271.
Paper not yet in RePEc: Add citation now
M. O. Jackson and L. Yariv (2015). Collective dynamic choice: The necessity of time inconsistency. American Economic Journal: Microeconomics, 7(4):150-178.
P. Klibanoff, M. Marinacci, and S. Mukerji (2005). A smooth model of decision making under ambiguity.
P. Klibanoff, M. Marinacci, and S. Mukerji (2009). Recursive smooth ambiguity preferences. Journal of Economic Theory, 144(3): 930-976.
- R. H. Strotz (1956). Myopia and inconsistency in dynamic utility maximization. Review of Economic Studies, 23: 165-180.
Paper not yet in RePEc: Add citation now
- S. Christensen and K. LindensjoÌ (2018). On finding equilibrium stopping times for time-inconsistent Markovian problems. SIAM Journal of Control and Optimization, 56(6): 4228-4255.
Paper not yet in RePEc: Add citation now
- S. Christensen and K. LindensjoÌ (2020). On time-inconsistent stopping problems and mixed strategy stopping times. Stochastic Processes and their Applications, 130(5): 2886-2917.
Paper not yet in RePEc: Add citation now
S. Ebert, W. Wei and X. Y. Zhou (2020). Weighted discountingâOn group diversity, time inconsistency, and consequences for investment. Journal of Economic Theory, 189: 105089.
S. Frederick, G. Loewenstein and T. OâDonoghue (2002). Time discounting and time preference: A critical review. Journal of Economic Literature, 40(2), 351-401.
T. BjoÌrk, M. Khapko, A. Murgoci (2017). On time-inconsistent stochastic control in continuous time. Finance and Stochastics, 21(2): 331-360.
Y. Huang and A. Nguyen-Huu (2018). Time-consistent stopping under decreasing impatience. Finance and Stochastics, 22(1): 69-95.
Y. Huang and A. Nguyen-Huu and X. Y. Zhou (2020). General stopping behaviors of naıÌve and noncommitted sophisticated agents, with application to probability distortion. Mathematical Finance, 30(1): 310-340.
Y. Huang and X. Yu (2021). Optimal stopping under model ambiguity: A time-consistent equilibrium approach. Mathematical Finance, 31(3): 979-1012.
Y. Huang and Z. Wang (2021). Optimal equilibria for multidimensional time-inconsistent stopping problems.
- Y. Huang and Z. Zhou (2019). The optimal equilibrium for time-inconsistent stopping problems-the discrete-time case. SIAM Journal on Control and Optimization, 57(1): 590-609.
Paper not yet in RePEc: Add citation now
Y. Huang and Z. Zhou (2020). Optimal equilibria for time-inconsistent stopping problems in continuous time. Mathematical Finance, 30(3): 1103-1134.