Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2017). âMicroeconomic origins of macroeconomic tail risksâ. American Economic Review 107.1, pp. 54â108.
Ahn, S. C. and A. R. Horenstein (2013). âEigenvalue ratio test for the number of factorsâ. Econometrica 81.3, pp. 1203â1227.
Antoniadis, A. and J. Fan (2001). âRegularization of wavelet approximationsâ. Journal of the American Statistical Association 96.455, pp. 939â967.
Arellano, M. and S. Bond (1991). âSome tests of specification for panel data: Monte Carlo evidence and an application to employment equationsâ. The Review of Economic Studies 58.2, pp. 277â297.
Bai, J. (2003). âInferential theory for factor models of large dimensionsâ. Econometrica 71.1, pp. 135â171.
Bai, J. and S. Ng (2002). âDetermining the number of factors in approximate factor modelsâ. Econometrica 70.1, pp. 191â221.
Bai, J. and Y. Liao (2017). âInferences in panel data with interactive effects using large covariance matricesâ. Journal of Econometrics 200.1, pp. 59â78.
- Bai, J., Y. Liao, and J. Yang (2015). âUnbalanced panel data models with interactive effectsâ. The Oxford Handbook of Panel Data.
Paper not yet in RePEc: Add citation now
Bailey, N., G. Kapetanios, and M. H. Pesaran (2016). âExponent of cross-sectional dependence: Estimation and inferenceâ. Journal of Applied Econometrics 31.6, pp. 929â960.
Bartik, T. J. (1991). âWho benefits from state and local economic development policies?â WE Upjohn Institute for Employment Research.
Blank, S., C. M. Buch, and K. Neugebauer (2009). âShocks at large banks and banking sector distress: The Banking Granular Residualâ. Journal of Financial Stability 5.4, pp. 353â373.
Caldara, D., M. Cavallo, and M. Iacoviello (2019). âOil price elasticities and oil price fluctuationsâ. Journal of Monetary Economics 103, pp. 1â20.
Callot, L., M. Caner, A. Ã. Ãnder, and E. Ulaşan (2021). âA nodewise regression approach to estimating large portfoliosâ. Journal of Business & Economic Statistics 39.2, pp. 520â531.
- Carvalho, V. and X. Gabaix (2013). âThe great diversification and its undoingâ. American Economic Review 103.5, pp. 1697â1727.
Paper not yet in RePEc: Add citation now
Chamberlain, G. (1987). âAsymptotic efficiency in estimation with conditional moment restrictionsâ. Journal of Econometrics 34.3, pp. 305â334.
Dupor, B. (1999). âAggregation and irrelevance in multi-sector modelsâ. Journal of Monetary Economics 43.2, pp. 391â409.
Econometrica 83.4, pp. 1543â1579. Onatski, A. (2010). âDetermining the number of factors from empirical distribution of eigenvaluesâ. The Review of Economics and Statistics 92.4, pp. 1004â1016.
Econometrics 168.2, pp. 244â258. Pagan, A. (1984). âEconometric issues in the analysis of regressions with generated regressorsâ. International Economic Review 25.1, pp. 221â247.
Energy Economics 59, pp. 382â399. Moon, H. R. and M. Weidner (2015). âLinear regression for panel with unknown number of factors as interactive fixed effectsâ.
Fan, J., Y. Liao, and M. Mincheva (2013). âLarge covariance estimation by thresholding principal orthogonal complementsâ. Journal of the Royal Statistical Society. Series B, Statistical methodology 75.4.
Freyaldenhoven, S. (2021). âFactor models with local factorsâDetermining the number of relevant factorsâ. Journal of Econometrics.
Fuller, W. A. (1977). âSome properties of a modification of the limited information estimatorâ. Econometrica, pp. 939â953.
Gabaix, X. (2011). âThe granular origins of aggregate fluctuationsâ. Econometrica 79.3, pp. 733â772.
- Gabaix, X. and R. S. Koijen (2021). âGranular instrumental variablesâ. Available at SSRN 3368612.
Paper not yet in RePEc: Add citation now
Gatti, D. D., C. Di Guilmi, E. Gaffeo, G. Giulioni, M. Gallegati, and A. Palestrini (2005). âA new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragilityâ. Journal of Economic Behavior & Organization 56.4, pp. 489â512.
Greenaway-McGrevy, R., C. Han, and D. Sul (2012). âAsymptotic distribution of factor augmented estimators for panel regressionâ.
- Hillier, G. and V. Srivastava (1981). âThe exact bias and mean square error of the k-class estimators for the coefficient of an endogenous variable in a general structural equationâ. mimeographed, Monash University.
Paper not yet in RePEc: Add citation now
Horvath, M. (2000). âSectoral shocks and aggregate fluctuationsâ. Journal of Monetary Economics 45.1, pp. 69â106.
Kadane, J. B. (1971). âComparison of k-class estimators when the disturbances are smallâ. Econometrica, pp. 723â737.
Kapetanios, G. and M. Marcellino (2010). âFactor-GMM estimation with large sets of possibly weak instrumentsâ. Computational Statistics & Data Analysis 54.11, pp. 2655â2675.
Kilian, L. (2009). âNot all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil marketâ. American Economic Review 99.3, pp. 1053â69.
Kinal, T. W. (1980). âThe existence of moments of k-class estimatorsâ. Econometrica 48.1, pp. 241â249.
Koren, M. and S. Tenreyro (2007). âVolatility and developmentâ. The Quarterly Journal of Economics 122.1, pp. 243â287.
Lera, S. C. and D. Sornette (2017). âQuantification of the evolution of firm size distributions due to mergers and acquisitionsâ.
- Long, J. B. and C. I. Plosser (1983). âReal business cyclesâ. Journal of Political Economy 91.1, pp. 39â69.
Paper not yet in RePEc: Add citation now
Malevergne, Y., P. Santa-Clara, and D. Sornette (2009). Professor Zipf goes to Wall Street. Tech. rep. National Bureau of Economic Research.
Mariano, R. S. (1973). âApproximations to the distribution functions of the ordinary least-squares and two-stage least-squares estimators in the case of two included endogenous variablesâ. Econometrica, pp. 67â77.
Mohaddes, K. and M. H. Pesaran (2016). âCountry-specific oil supply shocks and the global economy: A counterfactual analysisâ.
Pesaran, M. H. and C. F. Yang (2020). âEconometric analysis of production networks with dominant unitsâ. Journal of Econometrics 219.2, pp. 507â541.
- PLOS One 12.8. Logan, B. F., C. Mallows, S. Rice, and L. A. Shepp (1973). âLimit distributions of self-normalized sumsâ. The Annals of Probability 1.5, pp. 788â809.
Paper not yet in RePEc: Add citation now
Rigobon, R. (2003). âIdentification through heteroskedasticityâ. Review of Economics and Statistics 85.4, pp. 777â792.
Rothenberg, T. J. (1984). âApproximating the distributions of econometric estimators and test statisticsâ. Handbook of Econometrics 2, pp. 881â935.
Sargan, J. (1978). âOn the existence of the moments of 3SLS estimatorsâ. Econometrica, pp. 1329â1350.
Sawa, T. (1972). âFinite-sample properties of the k-class estimatorsâ. Econometrica, pp. 653â680.
Schiaffi, S. et al. (2013). âThe Granularity of the Stock Market: Forecasting Aggregate Returns Using Firm-Level Dataâ. Rivista di Politica Economica 4, pp. 141â169.
Staiger, D. and J. H. Stock (1997). âInstrumental Variables Regression with Weak Instrumentsâ. Econometrica 65.3, pp. 557â586.
Takeuchi, K. (1970). âExact sampling moments of the ordinary least squares, instrumental variable and two-stage least squares estimatorsâ. International Economic Review 11.1, pp. 1â12.
Ullah, A. and A. Nagar (1974). âThe exact mean of the two-stage least squares estimator of the structural parameters in an equation having three endogenous variablesâ. Econometrica 42.4, pp. 749â758.
Yan, W. (2011). âRole of diversification risk in financial bubblesâ. Swiss Finance Institute Research Paper 11-26.