[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
create a website
Optimizing the reliability of a bank with Logistic Regression and Particle Swarm Optimization. (2020). Madhav, Vadlamani ; Ravi, Vadlamani .
In: Papers.
RePEc:arx:papers:2004.11122.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 19

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. A. Volkov, D. F. Benoit, D. Van den Poel (2017) , Incorporating sequential information in bankruptcy prediction with predictors based on Markov for discrimination, Decision Support Systems, Volume 98, Pages 59-68, https://doi.org/10.1016/j.dss.2017.04.008.
    Paper not yet in RePEc: Add citation now
  2. D. Liang, C-C. Lu, C-F. Tsai, G-A. Shih (2016) Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study, European Journal of Operational Research, Volume 252, Issue 2, Pages 561-572, https://doi.org/10.1016/j.ejor.2016.01.012.

  3. E. Altman, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, Journal of Finance, 23 (1968) 589–609.

  4. E.A. Posnaya, I.G. Vorobyova and S.V. Tarasenko (2017) Improving the Bank Reliability Evaluation Framework, European Research Studies Journal, Volume XX, Issue 3B, 2017, 138- 10 Iberahim, H., Mohd Taufik, N.K. , Mohd Adzmir, A.S. & Saharuddin, H., (2016) Customer Satisfaction on Reliability and Responsiveness of Self Service Technology for Retail Banking Services, Fifth International Conference On Marketing And Retailing, (5TH INCOMaR), Procedia Economics and Finance 37, 13-20 Y-K. Lin, H-C. Chou and P-C. Chang (2017), Reliability and sensitivity analysis for a banking company transmission system, Proc IMechE Part O: Journal of Risk and Reliability, 1-9 D. Veganzones and E. Séverin (2018), An investigation of bankruptcy prediction in imbalanced datasets, Decision Support Systems, Volume 112, 2018, Pages 111-124, https://doi.org/10.1016/j.dss.2018.06.011.

  5. F. Antunes, B. Ribeiro, F. Pereira (2017) Probabilistic modeling and visualization for bankruptcy prediction, Applied Soft Computing, Volume 60, Pages 831-843, https://doi.org/10.1016/j.asoc.2017.06.043 Y Shi and X. Li (2019), A bibliometric study on intelligent techniques of bankruptcy prediction for corporate firms, Heliyon, Volume 5, Issue 12, e02997 H. A. Alaka, L. O. Oyedele, H. A. Owolabi, V. Kumar, S. O. Ajayi, O. O. Akinade, M. Bilal (2018) Systematic review of bankruptcy prediction models: Towards a framework for tool selection, Expert Systems with Applications, Volume 94, Pages 164-184, https://doi.org/10.1016/j.eswa.2017.10.040.
    Paper not yet in RePEc: Add citation now
  6. F. Mai, S. Tian, C. Lee, L. Ma (2019), Deep learning models for bankruptcy prediction using textual disclosures, European Journal of Operational Research, Volume 274, Issue 2, Pages 743-758, https://doi.org/10.1016/j.ejor.2018.10.024.

  7. I. Olmeda, E. Fernandez, (1997) Hybrid classifiers for financial multicriteria decision making: The case of bankruptcy prediction. Computational Economics, 10, 317–335.
    Paper not yet in RePEc: Add citation now
  8. M. J. Beynon and M. J. Peel, (2001) Variable precision rough set theory and data discretisation: an application to corporate failure prediction, Omega, 29, 561–576.

  9. M. Wang, H. Chen, H. Li, Z. Cai, X. Zhao, C. Tong, J. Li, X. Xu (2017) , Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction, Engineering Applications of Artificial Intelligence, Volume 63, Pages 54-68, https://doi.org/10.1016/j.engappai.2017.05.003.
    Paper not yet in RePEc: Add citation now
  10. M. Zięba, S. K. Tomczak, J. M. Tomczak (2016) Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction, Expert Systems with Applications, Volume 58, Pages 93-101, https://doi.org/10.1016/j.eswa.2016.04.001.
    Paper not yet in RePEc: Add citation now
  11. M. Zoričák, P. Gnip, P. Drotár, V. Gazda (2020), Bankruptcy prediction for small- and meium-sized companies using severely imbalanced datasets, Economic Modelling, Volume 84, 2020, Pages 165176, https://doi.org/10.1016/j.econmod.2019.04.003.

  12. P. du Jardin (2017), Dynamics of firm financial evolution and bankruptcy prediction, Expert Systems with Applications, Volume 75, Pages 25-43, https://doi.org/10.1016/j.eswa.2017.01.016.
    Paper not yet in RePEc: Add citation now
  13. P. Ravi Kumar, V. Ravi (2007) Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review, European Journal of Operational Research, Volume 180, Issue 1, Pages 1-28, https://doi.org/10.1016/j.ejor.2006.08.043.

  14. Q. Yuan and Q. Gao (2019), Reliability and Validity of Measurement Scale for Perceived Service Quality in Internet Bank: A Review, P.-L. P. Rau (Ed.): HCII 2019, LNCS 11576, pp. 352–362, 2019.
    Paper not yet in RePEc: Add citation now
  15. R. Cole and J. Gunther (1995), A CAMEL rating’s shelf life, Federal Reserve Bank of Dallas Review, pp. 13-20 I. Solovjova and I. Romānova (2020), Bank Reliability Assessment Model: Case of Latvia, M. H. Bilgin et al. (eds.), Eurasian Business Perspectives, Eurasian Studies in Business and Economics 12/2, https://doi.org/10.1007/978-3-030-35051-2_19, Springer Nature Switzerland.
    Paper not yet in RePEc: Add citation now
  16. S. Canbas, A.Caubak, S. B. Kilic, (2005) Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case. European Journal of Operational Research, 166, 528–546.

  17. T. Hosaka (2019) Bankruptcy prediction using imaged financial ratios and convolutional neural networks, Expert Systems with Applications, Volume 117, Pages 287-299, https://doi.org/10.1016/j.eswa.2018.09.039 H. Son, C. Hyun, D. Phan, H.J. Hwang (2019), Data analytic approach for bankruptcy prediction, Expert Systems with Applications, Volume 138, 112-816, https://doi.org/10.1016/j.eswa.2019.07.033.
    Paper not yet in RePEc: Add citation now
  18. T. Nyitrai and M. Virág (2019) The effects of handling outliers on the performance of bankruptcy prediction models, Socio-Economic Planning Sciences, Volume 67, Pages 34-42, https://doi.org/10.1016/j.seps.2018.08.004.

  19. Verikas, A., Kalsyte, Z., Bacauskiene, M. and Gelzinis, A. (2010) Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey. Soft Computing 14, 995–1010 https://doi.org/10.1007/s00500-009-0490-5 J. Kennedy and R. C. Eberhart (1995) “Particle Swarm Optimization”, Proceeding of IEEE International conference on Neural Networks, Piscataway, NJ, USA, 1942-1948.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. A two?stage Bayesian network model for corporate bankruptcy prediction. (2022). Hua, Shan ; Zhai, Jia ; Liu, Xiaoquan ; Cao, YI.
    In: International Journal of Finance & Economics.
    RePEc:wly:ijfiec:v:27:y:2022:i:1:p:455-472.

    Full description at Econpapers || Download paper

  2. Clues from networks: quantifying relational risk for credit risk evaluation of SMEs. (2022). Long, Jingjing ; Jiang, Cuiqing ; Dimitrov, Stanko ; Wang, Zhao.
    In: Financial Innovation.
    RePEc:spr:fininn:v:8:y:2022:i:1:d:10.1186_s40854-022-00390-1.

    Full description at Econpapers || Download paper

  3. A theory?driven machine learning system for financial disinformation detection. (2022). Zhang, Zhongju ; Du, Qianzhou.
    In: Production and Operations Management.
    RePEc:bla:popmgt:v:31:y:2022:i:8:p:3160-3179.

    Full description at Econpapers || Download paper

  4. Fallen Angel Bonds Investment and Bankruptcy Predictions Using Manual Models and Automated Machine Learning. (2022). Shin, Will ; Cronbaugh, Noah ; Lillard, Linda ; Jia, Juannan ; Mateika, Harrison.
    In: Papers.
    RePEc:arx:papers:2212.03454.

    Full description at Econpapers || Download paper

  5. A Comprehensive Survey on Enterprise Financial Risk Analysis: Problems, Methods, Spotlights and Applications. (2022). Du, Huaming ; Zhao, YU.
    In: Papers.
    RePEc:arx:papers:2211.14997.

    Full description at Econpapers || Download paper

  6. Firm financial performance during the financial crisis: A French case study. (2021). Meftehwali, Salma ; Hassine, Rabi Belhaj ; ben Jabeur, Sami.
    In: International Journal of Finance & Economics.
    RePEc:wly:ijfiec:v:26:y:2021:i:2:p:2800-2812.

    Full description at Econpapers || Download paper

  7. Can earnings management information improve bankruptcy prediction models?. (2021). Veganzones, David ; Severin, Eric.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:306:y:2021:i:1:d:10.1007_s10479-021-04183-0.

    Full description at Econpapers || Download paper

  8. ANALYSIS OF FINANCIAL DISTRESS DETERMINANTS AND THE ROLE OF CORPORATE GOVERNANCE FOR RISK MITIGATION ON LISTED INDONESIAN MANUFACTURING COMPANIES: COVID-19 PANDEMIC. (2021). Bustaman, Yosman ; Rarassati, Jessica Putri.
    In: Business Excellence and Management.
    RePEc:rom:bemann:v:11:y:2021:i:5:p:182-195.

    Full description at Econpapers || Download paper

  9. Undersampling bankruptcy prediction: Taiwan bankruptcy data. (2021). Liu, Xiangdong ; Wang, Haoming.
    In: PLOS ONE.
    RePEc:plo:pone00:0254030.

    Full description at Econpapers || Download paper

  10. Factors Determining Z-score and Corporate Failure in Malaysian Companies. (2021). Alam, Md. Mahmudul ; Lokman, Norziana ; Hasanah, Nurul Izzaty ; Said, Jamaliah.
    In: OSF Preprints.
    RePEc:osf:osfxxx:ke8ab.

    Full description at Econpapers || Download paper

  11. Enterprise Risk Management and Solvency: The Case of the Listed EU Insurers. (2021). Nguyen, Duc Khuong ; Vo, Dinh-Tri.
    In: Working Papers.
    RePEc:ipg:wpaper:2021-010.

    Full description at Econpapers || Download paper

  12. Factors determining Z-score and corporate failure in Malaysian companies. (2021). Said, Jamaliah ; Alam, Md Mahmudul ; Lokman, Norziana ; Hasanah, Nurul Izzaty.
    In: Post-Print.
    RePEc:hal:journl:hal-03520192.

    Full description at Econpapers || Download paper

  13. What Best Predicts Corporate Bank Loan Defaults? An Analysis of Three Different Variable Domains. (2021). Lukason, Oliver ; Kohv, Keijo.
    In: Risks.
    RePEc:gam:jrisks:v:9:y:2021:i:2:p:29-:d:486527.

    Full description at Econpapers || Download paper

  14. The Role of Board Independence and Ownership Structure in Improving the Efficacy of Corporate Financial Distress Prediction Model: Evidence from India. (2021). Vincent, Theresa Nithila ; Shetty, Shilpa H.
    In: JRFM.
    RePEc:gam:jjrfmx:v:14:y:2021:i:7:p:333-:d:596701.

    Full description at Econpapers || Download paper

  15. A New Approach for Risk of Corporate Bankruptcy Assessment during the COVID-19 Pandemic. (2021). Boratyska, Katarzyna.
    In: JRFM.
    RePEc:gam:jjrfmx:v:14:y:2021:i:12:p:590-:d:696923.

    Full description at Econpapers || Download paper

  16. CatBoost model and artificial intelligence techniques for corporate failure prediction. (2021). ben Arfi, Wissal ; Mefteh-Wali, Salma ; Gharib, Cheima ; ben Jabeur, Sami.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:166:y:2021:i:c:s0040162521000901.

    Full description at Econpapers || Download paper

  17. Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction. (2021). Chiu, Andy ; Hu, Ya-Han ; Sue, Kuen-Liang ; Tsai, Chih-Fong.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:130:y:2021:i:c:p:200-209.

    Full description at Econpapers || Download paper

  18. The role of earnings components and machine learning on the revelation of deteriorating firm performance. (2021). Meral, Gorkem ; Yelkenci, Tezer ; Oz, Ibrahim Onur.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:77:y:2021:i:c:s1057521921001332.

    Full description at Econpapers || Download paper

  19. Forecasting corporate failure using ensemble of self-organizing neural networks. (2021). du Jardin, Philippe.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:288:y:2021:i:3:p:869-885.

    Full description at Econpapers || Download paper

  20. A horse race of models and estimation methods for predicting bankruptcy. (2021). Yeung, Danny ; Bird, Ron ; Lu, Yue ; Almaskati, Nawaf.
    In: Advances in accounting.
    RePEc:eee:advacc:v:52:y:2021:i:c:s0882611021000018.

    Full description at Econpapers || Download paper

  21. .

    Full description at Econpapers || Download paper

  22. Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods. (2020). Tang, Xiaobo ; Shi, Wenxuan ; Li, Shixuan.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:39:y:2020:i:5:p:769-787.

    Full description at Econpapers || Download paper

  23. Relationship of Property Structure and Performance of High-Tech Technology Companies. (2020). Rybalka, A I.
    In: Studies on Russian Economic Development.
    RePEc:spr:sorede:v:31:y:2020:i:3:d:10.1134_s1075700720030144.

    Full description at Econpapers || Download paper

  24. Corporate Social Responsibility and Corporate Performance: A Hybrid Text Mining Algorithm. (2020). Huang, Yu-Lan ; Lee, Mushang.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:8:p:3075-:d:344317.

    Full description at Econpapers || Download paper

  25. The Role of Environmental, Social, and Governance Disclosure in Financial Transparency. (2020). Aviana, Anca Elena ; Popescu, Delia-Mioara ; Oncioiu, Ionica ; Marin-Pantelescu, Andreea ; Petrescu, Mihai ; Rotaru, Florica ; Erban, Alina.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:17:p:6757-:d:401646.

    Full description at Econpapers || Download paper

  26. Corporate Default Predictions Using Machine Learning: Literature Review. (2020). Cho, Hoon ; Kim, Hyeongjun ; Ryu, Doojin.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:16:p:6325-:d:395215.

    Full description at Econpapers || Download paper

  27. The Problem of Bankruptcy in Listed Companies. (2020). Tarczynska-Luniewska, Malgorzata ; Tarczynski, Waldemar ; Flaga-Gieruszynska, Kinga.
    In: European Research Studies Journal.
    RePEc:ers:journl:v:xxiii:y:2020:i:special2:p:3-15.

    Full description at Econpapers || Download paper

  28. Independence in bank governance structure: Empirical evidence of effects on bank risk and performance. (2020). Mare, Davide Salvatore ; Crook, J N ; Harkin, S M.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:52:y:2020:i:c:s0275531919306415.

    Full description at Econpapers || Download paper

  29. Combining corporate governance indicators with stacking ensembles for financial distress prediction. (2020). Chang, Li-Shin ; Lu, Hung-Yuan ; Tsai, Chih-Fong ; Liang, Deron.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:120:y:2020:i:c:p:137-146.

    Full description at Econpapers || Download paper

  30. Enterprise risk management and solvency: The case of the listed EU insurers. (2020). Nguyen, Duc Khuong ; Vo, Dinh-Tri.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:113:y:2020:i:c:p:360-369.

    Full description at Econpapers || Download paper

  31. Supervised learning for the prediction of firm dynamics. (2020). Riccaboni, Massimo ; Niederreiter, Jan ; Bargagli-Stoffi, Falco J.
    In: Papers.
    RePEc:arx:papers:2009.06413.

    Full description at Econpapers || Download paper

  32. Optimizing the reliability of a bank with Logistic Regression and Particle Swarm Optimization. (2020). Madhav, Vadlamani ; Ravi, Vadlamani .
    In: Papers.
    RePEc:arx:papers:2004.11122.

    Full description at Econpapers || Download paper

  33. The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy. (2019). Yeung, Danny ; Bird, Ron ; Leung, Danny ; Lu, Yue ; Almaskati, Nawaf.
    In: Working Papers in Economics.
    RePEc:wai:econwp:19/16.

    Full description at Econpapers || Download paper

  34. An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms. (2019). Christopoulos, Apostolos G ; Leventides, John ; Kollias, Iraklis ; Dokas, Ioannis G.
    In: Bulletin of Applied Economics.
    RePEc:rmk:rmkbae:v:6:y:2019:i:1:p:1-20.

    Full description at Econpapers || Download paper

  35. A Hybrid Model for Addressing the Relationship between Financial Performance and Sustainable Development. (2019). Lee, Mushang ; Zhang, Yanfang.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:10:p:2899-:d:233241.

    Full description at Econpapers || Download paper

  36. Tax Arrears Versus Financial Ratios in Bankruptcy Prediction. (2019). Andresson, Art ; Lukason, Oliver.
    In: JRFM.
    RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:187-:d:296570.

    Full description at Econpapers || Download paper

  37. Dynamic Bankruptcy Prediction Models for European Enterprises. (2019). Korol, Tomasz.
    In: JRFM.
    RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:185-:d:295688.

    Full description at Econpapers || Download paper

  38. Bayesian regularized artificial neural networks for the estimation of the probability of default. (2019). Germano, Guido ; Sariev, Eduard.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:101029.

    Full description at Econpapers || Download paper

  39. The use of accounting anomalies indicators to predict business failure. (2019). Gutiérrez-Nieto, Begoña ; Bernate-Valbuena, Martha ; Gutierrez-Nieto, Begoa ; Serrano-Cinca, Carlos.
    In: European Management Journal.
    RePEc:eee:eurman:v:37:y:2019:i:3:p:353-375.

    Full description at Econpapers || Download paper

  40. Deep learning models for bankruptcy prediction using textual disclosures. (2019). Mai, Feng ; Lee, Chihoon ; Tian, Shaonan.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:274:y:2019:i:2:p:743-758.

    Full description at Econpapers || Download paper

  41. News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions. (2019). Feuerriegel, Stefan ; Gordon, Julius.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:272:y:2019:i:1:p:162-175.

    Full description at Econpapers || Download paper

  42. Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions. (2018). Ouenniche, Jamal ; Mousavi, Mohammad Mahdi.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:271:y:2018:i:2:d:10.1007_s10479-018-2814-2.

    Full description at Econpapers || Download paper

  43. Predicting Corporate Failure: The GRASP-LOGIT Model || Predicción de la quiebra empresarial: el modelo GRASP-LOGIT. (2018). Nuñez Letamendia, Laura ; Author-Email, Joaquin Antonio ; Laura, Laura Author-Email ; Yusta, Silvia Casado.
    In: Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration.
    RePEc:pab:rmcpee:v:26:y:2018:i:1:p:294-314.

    Full description at Econpapers || Download paper

  44. Negative Net Worth of Manufacturing Companies: Corporate Governance and Industry Expectations. (2018). Karminsky, Alexandr ; Rybalka, A.
    In: Journal of the New Economic Association.
    RePEc:nea:journl:y:2018:i:38:p:76-103.

    Full description at Econpapers || Download paper

  45. Are Commercial Financial Databases Reliable? New Evidence from Korea. (2017). Lee, Youngsu ; No, Won Gyun ; Nam, Hyunjung.
    In: Sustainability.
    RePEc:gam:jsusta:v:9:y:2017:i:8:p:1406-:d:107599.

    Full description at Econpapers || Download paper

  46. Approaches on Correlation between Board of Directors and Risk Management in Resilient Economies. (2017). Vintila, Georgeta ; armeanu, dan ; Petrache, Dan Cosmin ; Gherghina, Tefan Cristian.
    In: Sustainability.
    RePEc:gam:jsusta:v:9:y:2017:i:2:p:173-:d:88792.

    Full description at Econpapers || Download paper

  47. Financial distress prediction: The case of French small and medium-sized firms. (2017). Mselmi, Nada ; Hamza, Taher ; Lahiani, Amine.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:50:y:2017:i:c:p:67-80.

    Full description at Econpapers || Download paper

  48. Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics. (2017). Doumpos, Michalis ; Zopounidis, Constantin ; Makridou, Georgia ; Galariotis, Emilios ; Andriosopoulos, Kostas.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:262:y:2017:i:1:p:347-360.

    Full description at Econpapers || Download paper

  49. .

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-24 14:23:25 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.