- â (1979), âC(α) Tests and Their Use,â SankhyaÌ: The Indian Journal of Statistics, Series A (1961-2002), 41, 1â21.
Paper not yet in RePEc: Add citation now
- â (1986), Asymptotic Methods in Statistical Decision Theory, Springer Series in Statistics, New York, NY, USA: Springer.
Paper not yet in RePEc: Add citation now
- â (1991), âEstimation of Tobit models under conditional symmetry,â in Nonparametric and Semiparametric Methods in Econometrics and Statistics: Proceedings of the Fifth International Symposium in Economic Theory and Econometrics, eds. Barnett, W. A., Powell, J., and Tauchen, G. E., Cambridge University Press, International Symposia in Economic Theory and Econometrics.
Paper not yet in RePEc: Add citation now
- â (1992), âEfficiency Bounds for Semiparametric Regression,â Econometrica, 60, 567â596.
Paper not yet in RePEc: Add citation now
- â (1998), Asymptotic Statistics, New York, NY, USA: Cambridge University Press.
Paper not yet in RePEc: Add citation now
- â (1999), âEstimation When a Parameter is on a Boundary,â Econometrica, 67, 1341â1383.
Paper not yet in RePEc: Add citation now
- â (2001), âEstimating the Return to Schooling: Progress on Some Persistent Econometric Problems,â Econometrica, 69, 1127â1160.
Paper not yet in RePEc: Add citation now
- â (2001), âTesting When a Parameter is on the Boundary of the Maintained Hypothesis,â Econometrica, 69, 683â734.
Paper not yet in RePEc: Add citation now
- â (2002), âSemiparametric Statistics,â in Lectures on Probability Theory and Statistics: Ecole dâEteÌ de ProbabiliteÌs de Saint-Flour XXIX - 1999, ed. Bernard, P., Springer.
Paper not yet in RePEc: Add citation now
- â (2005), âTesting Parameters in GMM Without Assuming that They Are Identified, â Econometrica, 73, 1103â1123.
Paper not yet in RePEc: Add citation now
- â (2009), âTests with correct size when instruments can be arbitrarily weak,â Journal of Econometrics, 152, 131â140.
Paper not yet in RePEc: Add citation now
- â (2010), âAsymptotic Size and a Problem with Subsampling and with the m out of n Bootstrap,â Econometric Theory, 26, 426â468.
Paper not yet in RePEc: Add citation now
- â (2012), âThe Colonial Origins of Comparative Development: An Empirical Investigation: Reply,â American Economic Review, 102, 3077â3110.
Paper not yet in RePEc: Add citation now
- â (2016), âConditional Inference With a Functional Nuisance Parameter,â Econometrica, 84, 1571â1612.
Paper not yet in RePEc: Add citation now
- â (2019), âIdentification- and singularity-robust inference for moment condition models,â Quantitative Economics, 10, 1703â1746.
Paper not yet in RePEc: Add citation now
- â (2022), âOptimal Decision Rules for Weak GMM,â Econometrica, 90, 715â748.
Paper not yet in RePEc: Add citation now
- â (2023), âGMM is Inadmissible Under Weak Identification,â .
Paper not yet in RePEc: Add citation now
- â (2024b), âSupplement to âLocally Robust Inference for Non-Gaussian Linear Simultaneous Equations Modelsâ,â Journal of Econometrics Supplementary Material, 240.
Paper not yet in RePEc: Add citation now
- â (2024b), âSupplement to âLocally Robust Inference for Non-Gaussian SVAR Modelsâ,â Quantitative Economics Supplementary Material, forthcoming.
Paper not yet in RePEc: Add citation now
- Acemoglu, D., Johnson, S., and Robinson, J. A. (2001), âThe Colonial Origins of Comparative Development: An Empirical Investigation,â American Economic Review, 91, 1369â1401.
Paper not yet in RePEc: Add citation now
- Albouy, D. Y. (2012), âThe Colonial Origins of Comparative Development: An Empirical Investigation: Comment,â American Economic Review, 102, 3059â76.
Paper not yet in RePEc: Add citation now
- Amengual, D., Bei, X., and Sentana, E. (2023), âHypothesis Tests with a Repeatedly Singular Information Matrix,â Working paper.
Paper not yet in RePEc: Add citation now
- Anderson, T. W. and Rubin, H. (1949), âEstimation of the Parameters of a Single Equation in a Complete System of Stochastic Equations,â The Annals of Mathematical Statistics, 20, 46 â 63.
Paper not yet in RePEc: Add citation now
- Andrews, D. W. K. (1987), âAsymptotic Results for Generalized Wald Tests,â Econometric Theory, 3, 348â358.
Paper not yet in RePEc: Add citation now
- Andrews, D. W. K. and Cheng, X. (2012), âEstimation and Inference With Weak, Semi-Strong, and Strong Identification,â Econometrica, 80, 2153â2211.
Paper not yet in RePEc: Add citation now
- Andrews, D. W. K. and Guggenberger, P. (2009), âHybrid and Size-Corrected Subsampling Methods,â Econometrica, 77, 721â762.
Paper not yet in RePEc: Add citation now
- Andrews, D. W., Moreira, M. J., and Stock, J. H. (2007), âPerformance of conditional Wald tests in IV regression with weak instruments,â Journal of Econometrics, 139, 116â132.
Paper not yet in RePEc: Add citation now
Andrews, I. and Mikusheva, A. (2015), âMaximum likelihood inference in weakly identified dynamic stochastic general equilibrium models,â Quantitative Economics, 6, 123â152.
- Andrews, I., Stock, J. H., and Sun, L. (2019), âWeak Instruments in Instrumental Variables Regression: Theory and Practice,â Annual Review of Economics, 11, 727â753.
Paper not yet in RePEc: Add citation now
- Applying Lemma 1.8 in van der Vaart (2002) demonstrates that equation (20) holds, with Aγh as in (21). Lemma 1.7 of van der Vaart (2002) ensures that Aγh â L0 2(Pγ). The form of Aγh reveals that it is a linear map on Hη. That it is bounded follows from â¥Aγhâ¥2 ⤠C1E Ï(ϵ, X)2 â¥Xâ¥2 â¥Ïâ¥2 + E Ï(ϵ, X)2 â¥b1â¥2 + â¥b2â¥2 ⤠C2â¥hâ¥2 , where C1, C2 â (0, â) are positive constants. Apply Lemma 7 to complete the proof. Motivation for the conditions on b2 Equation (26) imposes 3 conditions on the functions b2, i.e. the score functions corresponding to the perturbation of the density function ζ. As the first and last such conditions, i.e. that b2 is mean zero with finite second moment is a requirement of any score function (cf.
Paper not yet in RePEc: Add citation now
- b1(Z) = 0, and (b) the components of [Ï(Z)â² , Zâ² 1]â² E[V1V â² 2|Z]E[V2V â² 2|Z]â1 V2 are in in cl{b1(Z)â² V2 : b1 â Bγ,1}. This follows as E⥠[Ï(Z)â² , Zâ² 1]â² E[V1V â² 2|Z]E[V2V â² 2|Z]â1 V2â¥2 < â by equation (37) and Assumption 9, and any such component may be arbitrarily well approximated by b1,n(Z)â² V2 for bounded measurable functions b1,n â Bγ,1 since the set of such functions is dense in L2. The first equality in the final claim follows from Example A.2.1 in Bickel et al. (1998). For the second equality note that with Q(Z) := J(Z)â1 E1 â Q(Z)1,2Q(Z)â1 2,2E2 = hh 1 0â² K i â Q(Z)1,2Q(Z)â1 2,2 h 0K IK ii Q(Z)U = hh Q(Z)1,1 Q(Z)1,2 i â Q(Z)1,2Q(Z)â1 2,2 h Q(Z)2,1 Q(Z)2,2 ii U = h Q(Z)1,1 â Q(Z)1,2Q(Z)â1 2,2Q(Z)2,1 0K i
Paper not yet in RePEc: Add citation now
Belloni, A., Chernozhukov, V., Chetverikov, D., and Kato, K. (2015), âSome new asymptotic theory for least squares series: Pointwise and uniform results,â Journal of Econometrics, 186, 345â366.
- Ben-Israel, A. and Greville, T. N. E. (2003), Generalized Inverses: Theory and Applications, New York, NY, USA: Springer.
Paper not yet in RePEc: Add citation now
- Bernstein, D. S. (2009), Matrix mathematics: theory, facts, and formulas, Princeton, NJ, USA: Princeton University Press, 2nd ed.
Paper not yet in RePEc: Add citation now
- Bickel, P. J., Klaassen, C. A. J., Ritov, Y., and Wellner, J. A. (1998), Efficient and Adaptive Estimation for Semiparametric Models, New York, NY, USA: Springer.
Paper not yet in RePEc: Add citation now
- Bickel, P. J., Ritov, Y., and Stoker, T. M. (2006), âTailor-made tests for goodness of fit to semiparametric hypotheses,â The Annals of Statistics, 34, 721 â 741.
Paper not yet in RePEc: Add citation now
- Billingsley, P. (1999), Convergence of Probability Measures, Wiley.
Paper not yet in RePEc: Add citation now
- Bravo, F., Escanciano, J. C., and Van Keilegom, I. (2020), âTwo-step semiparametric empirical likelihood inference,â Ann. Statist., 48, 1â26.
Paper not yet in RePEc: Add citation now
- By Theorem 9.1 in Janson (1997), Yn = E[Gnh|Gn] and Y m n = E[Gnh|G m n ]. Therefore, P (â¥Xn â Xm n ⥠> ε) = P (|Yn â Y m n | > ε) ⤠C exp â ε2 Ï2 n,m
Paper not yet in RePEc: Add citation now
- By Theorem 9.1 in Janson (1997), Yn â cl{Gnb : b â B} and Y m n â {Gnb : b â Bm}, hence Yn â Y m n â¼ N(0, Ï2 n,m), Ï2 n,m := Var(Yn â Y m n ).
Paper not yet in RePEc: Add citation now
- Card, D. (1995), âUsing Geographic Variation in College Proximity to Estimate the Return to Schooling,â in Aspects of Labour Market Behaviour: Essays in Honour of John Vanderkamp, eds. Christofides, L. N., Grant, E. K., and Swidinsky, R., University of Toronto Press, pp. 201â222.
Paper not yet in RePEc: Add citation now
Chamberlain, G. (1986), âAsymptotic efficiency in semi-parametric models with censoring,â Journal of Econometrics, 32, 189â218.
- Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K., and Robins, J. M. (2022), âLocally Robust Semiparametric Estimation,â Econometrica, 90, 1501â1535.
Paper not yet in RePEc: Add citation now
- Chernozhukov, V., Hansen, C., and Spindler, M. (2015), âValid Post-Selection and Post-Regularization Inference: An Elementary, General Approach,â Annual Review of Economics, 7, 649â688.
Paper not yet in RePEc: Add citation now
- Choi, S., Hall, W. J., and Schick, A. (1996), âAsymptotically uniformly most powerful tests in parametric and semiparametric models,â Ann. Statist., 24, 841â861.
Paper not yet in RePEc: Add citation now
- Comon, P. (1994), âIndependent component analysis, A new concept?â Signal Processing, 36, 287â314.
Paper not yet in RePEc: Add citation now
- Conway, J. B. (1985), A Course in Functional Analysis, New York, NY, USA: Springer.
Paper not yet in RePEc: Add citation now
- Davidson, J. (2021), Stochastic limit theory, Oxford University Press, 2nd ed.
Paper not yet in RePEc: Add citation now
- Dudley, R. M. (2002), Real Analysis and Probability, Cambridge, UK: Cambridge University Press.
Paper not yet in RePEc: Add citation now
Dufour, J.-M. (1997), âSome Impossibility Theorems in Econometrics With Applications to Structural and Dynamic Models,â Econometrica, 65, 1365â1387.
- Dufour, J.-M. and ValeÌry, P. (2016), âRank-robust Regularized Wald-type tests,â Working paper.
Paper not yet in RePEc: Add citation now
- Elliott, G., MuÌller, U. K., and Watson, M. W. (2015), âNearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis,â Econometrica, 83, 771â811.
Paper not yet in RePEc: Add citation now
- Escanciano, J. C. (2022), âSemiparametric Identification and Fisher Information,â Econometric Theory, 38, 301â338.
Paper not yet in RePEc: Add citation now
- G[h]Ï = G[h]Ïâ . (51) For i = 1, . . . , dθ, let ui := Π⥠[(ei, 0)] and let X := (Zu1, . . . , Zudθ )â² . Let Ï be the test which rejects when Xâ² IÌâ γX 2 > cr, for cr the 1 â α quantile of a Ï2 r random variable. By Theorem 69.10 in Strasser (1985) X â¼ N(IÌγÏ, IÌγ) under G[h], where [Ï] = Ï1[h].
Paper not yet in RePEc: Add citation now
- Geyer, C. J. (1994), âOn the asymptotics of constrained M-estimation,â Annals of Statistics, 22, 1993â2010.
Paper not yet in RePEc: Add citation now
- Gut, A. (2005), Probability: A Graduate Course, Springer Texts in Statistics, Springer.
Paper not yet in RePEc: Add citation now
- Han, S. and McCloskey, A. (2019), âEstimation and inference with a (nearly) singular Jacobian,â Quantitative Economics, 10, 1019â1068.
Paper not yet in RePEc: Add citation now
- Hence by Theorem 61.6 of Strasser (1985) it suffices to show that the finite dimensional marginal distributions of h 7â Ln,γ(h) converge (under Pn,γ) to those of h 7â L(h) := âγhâ 1 2 â¥hâ¥2 γ. For this it is enough to note that the finite dimensional marginal distributions of ân,γ converge to those of âγ (under Pn,γ), as follows by the CrameÌr â Wold Theorem (as in the proof of Lemma 3). Proof of Proposition 3. Let G[0] := Pγ,0. Define a map Z : Hγ â L2(â¦, F, G[0]) according to Z[h] = âγ(h) for any arbitrary h â Ïâ1 V ([h]), where ÏV is the quotient map from Hγ â Hγ; that this is well defined is noted in footnote 59. By the definition of ⨠, â©Î³ on Hγ (cf. subsection S2.2) this is a standard Gaussian process for Hγ.58 Let each G[h] be defined such that dG[h] dG[0] = exp Z[h] â 1 2 â¥[h]â¥2 γ ,
Paper not yet in RePEc: Add citation now
- Hoesch, L., Lee, A., and Mesters, G. (2024a), âLocally Robust Inference for NonGaussian SVAR Models,â Quantitative Economics, forthcoming.
Paper not yet in RePEc: Add citation now
- Horowitz, J. L. (2009), Semiparametric and Nonparametric Methods in Econometrics, Springer-Verlag New York.
Paper not yet in RePEc: Add citation now
- Ichimura, H. (1993), âSemiparametric least squares (SLS) and weighted SLS estimation of single-index models,â Journal of Econometrics, 58, 71â120.
Paper not yet in RePEc: Add citation now
- Janson, S. (1997), Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, Cambridge University Press.
Paper not yet in RePEc: Add citation now
Jansson, M. (2008), âSemiparametric Power Envelopes for Tests of the Unit Root Hypothesis,â Econometrica, 76, 1103â1142.
- Kagan, A. M., Linnik, I. U. V., and Rao, C. R. (1973), Characterization Problems in Mathematical Statistics, Wiley.
Paper not yet in RePEc: Add citation now
- Kaji, T. (2021), âTheory of Weak Identification in Semiparametric Models,â Econometrica, 89, 733â763.
Paper not yet in RePEc: Add citation now
- Ketz, P. (2018), âSubvector inference when the true parameter vector may be near or at the boundary,â Journal of Econometrics, 207, 285â306.
Paper not yet in RePEc: Add citation now
- Kleibergen, F. (2002), âPivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression,â Econometrica, 70, 1781â1803.
Paper not yet in RePEc: Add citation now
- Kuchibhotla, A. K. and Patra, R. K. (2020), âEfficient estimation in single index models through smoothing splines,â Bernoulli, 26, 1587 â 1618.
Paper not yet in RePEc: Add citation now
- Kuchibhotla, A. K., Patra, R. K., and Sen, B. (2023), âSemiparametric Efficiency in Convexity Constrained Single-Index Model,â Journal of the American Statistical Association, 118, 272â286.
Paper not yet in RePEc: Add citation now
- Le Cam, L. M. (1960), Locally Asymptotically Normal Families of Distributions: Certain Approximations to Families of Distributions and Their Use in the Theory of Estimation and Testing Hypotheses, University of California Berkeley, Calif: University of California publications in statistics, University of California Press.
Paper not yet in RePEc: Add citation now
- Le Cam, L. M. and Yang, G. L. (2000), Asypmtotics in Statistics: Some Basic Concepts, New York, NY, USA: Springer, 2nd ed.
Paper not yet in RePEc: Add citation now
- Lee, A. and Mesters, G. (2024a), âLocally Robust Inference for Non-Gaussian Linear Simultaneous Equations Models,â Journal of Econometrics, 240, 105647.
Paper not yet in RePEc: Add citation now
- Lehmann, E. L. and Romano, J. P. (2005), Testing Statistical Hypotheses, New York, NY, USA: Springer, 3rd ed.
Paper not yet in RePEc: Add citation now
- LuÌtkepohl, H. and Burda, M. M. (1997), âModified wald tests under nonregular conditions,â Journal of Econometrics, 78, 315â332.
Paper not yet in RePEc: Add citation now
- McCloskey, A. (2017), âBonferroni-based size-correction for nonstandard testing problems,â Journal of Econometrics, 200, 17â35.
Paper not yet in RePEc: Add citation now
- McNeney, B. and Wellner, J. A. (2000), âApplication of convolution theorems in semiparametric models with non-i.i.d. data,â Journal of Statistical Planning and Inference, 91, 441 â 480.
Paper not yet in RePEc: Add citation now
- Meyer, M. C. (2008), âInference Using Shape-Restricted Regression Splines,â The Annals of Applied Statistics, 2, 1013â1033.
Paper not yet in RePEc: Add citation now
Moreira, M. J. (2003), âA Conditional Likelihood Ratio Test for Structural Models, â Econometrica, 71, 1027â1048.
- Newey, W. K. (1990), âSemiparametric efficiency bounds,â Journal of Applied Econometrics, 5, 99â135.
Paper not yet in RePEc: Add citation now
- Newey, W. K. and McFadden, D. (1994), âChapter 36 Large sample estimation and hypothesis testing,â Elsevier, vol. 4 of Handbook of Econometrics, pp. 2111â 2245.
Paper not yet in RePEc: Add citation now
- Newey, W. K. and Stoker, T. M. (1993), âEfficiency of Weighted Average Derivative Estimators and Index Models,â Econometrica, 61, 1199â1223.
Paper not yet in RePEc: Add citation now
- Neyman, J. (1959), âOptimal Asymptotic Tests of Composite Statistical Hypotheses, â in Probability and Statistics, the Harald CrameÌr Volume, ed. Grenander, U., New York, USA: Wiley.
Paper not yet in RePEc: Add citation now
- Proof of Proposition 2. Remark 1 and the transitivity of (mutual) contiguity ensures that the experiments En,γ are contiguous (cf. Strasser, 1985, Definition 61.1).
Paper not yet in RePEc: Add citation now
- Proof of Theorem 3. Ï1 is valued in Hγ,1 = Rdθ / ker IÌγ, by Lemma 4. It is also surjective: for any [Ï] â Rdθ / ker IÌγ let t â Ïâ1 ker IÌγ ({[Ï]}) where Ïker IÌγ is the quotient map between Rdθ and Hγ,1. Then Ï1[(t, 0)] = [t] = [Ï]. Therefore, since Hγ,1 = Rdθ / ker IÌγ â ran IÌγ (e.g. Roman, 2005, Theorem 3.5), dim ran Ï1 = r.
Paper not yet in RePEc: Add citation now
- Proof. By the continuous mapping theorem and Le Camâs first lemma (e.g. van der Vaart, 1998, Lemma 6.4), pn,γ,hn pn,γ,g = exp (Ln,γ(hn) â Ln,γ(g)) Pn,γ,g â â â â 1. By Le Camâs first lemma again, Pn,γ,hn â Pn,γ,g. Let Ïn be arbitrary measurable functions valued in [0, 1]. Since the Ïn are uniformly tight, Prohorovâs theorem ensures that for any arbitrary subsequence (nj)jâN there exists a further subsequence (nm)mâN such that Ïnm â Ï â [0, 1] under Pnm,γ,g. Therefore by Slutskyâs Theorem Ïnm , pnm,γ,hnm pnm,γ,g â (Ï, 1) under Pnm,γ,g.
Paper not yet in RePEc: Add citation now
- Proposition S1 (Proposition S1 in Lee and Mesters (2024a)): If (S1) holds, Mn â M and for all n greater than some N â N rank(Mn) = rank(M), then MÌn Pn â â M and Pn
Paper not yet in RePEc: Add citation now
- Ramsay, J. O. (1988), âMonotone Regression Splines in Action,â Statistical Science, 3, 425â441.
Paper not yet in RePEc: Add citation now
- Rao, C. R. and Mitra, S. K. (1971), Generalized Inverse of Matrices and its Applications, New York, NY, USA: John Wiley & Sons, Inc.
Paper not yet in RePEc: Add citation now
- Ritov, Y. and Bickel, P. J. (1990), âAchieving Information Bounds in Non and Semiparametric Models,â The Annals of Statistics, 18, 925 â 938.
Paper not yet in RePEc: Add citation now
- Roman, S. (2005), Advanced Linear Algebra, Graduate Texts in Mathematics, Springer.
Paper not yet in RePEc: Add citation now
- Romano, J. P. and Shaikh, A. M. (2012), âOn the uniform asymptotic validity of subsampling and the bootstrap,â The Annals of Statistics, 40, 2798 â 2822.
Paper not yet in RePEc: Add citation now
- Rothenberg, T. J. (1971), âIdentification in Parametric Models,â Econometrica, 39, 577â591.
Paper not yet in RePEc: Add citation now
- Rudin, W. (1991), Functional analysis, McGraw Hill, Inc., 2nd ed.
Paper not yet in RePEc: Add citation now
- S3.2 IV model with non-parametric first stage S3.2.1 Proofs of results in the main text Proof of Lemma 9. We first note that E[EiEj|Z] = [J(Z)â1 ]i,j for i, j â {1, 2} where J(Z) is nonsingular by equation (37). The same equation combined with Proposition 2.8.4 in Bernstein (2009) also implies that q1(J(Z)) exists and is positive. Letting ξ = ξγ(W) = (Y â XⲠθ â Zâ² 1β, X â Ï(Z), Z) we have Ë lγ(W) := Ë lγ,1(W)â² , Ë lγ,2(W)â² â² = âÏ1(ξ)(Xâ² , Zâ² 1)â² [Dγ,1b1](W) := âÏ2(ξ)â² b1(Z), [Dγ,2b2](W) := b2(ξ). We first project Ë lγ and Dγ,1b1 onto the orthocomplement of {Dγ,2b2 : b2 â Bγ,2}.
Paper not yet in RePEc: Add citation now
- Serfozo, R. (1982), âConvergence of Lebesgue Integrals with Varying Measures,â SankhyaÌ: The Indian Journal of Statistics, Series A (1961-2002), 44, 380â402.
Paper not yet in RePEc: Add citation now
- Staiger, D. and Stock, J. H. (1997), âInstrumental Variables Regression with Weak Instruments,â Econometrica, 65, 557â586.
Paper not yet in RePEc: Add citation now
- Strasser, H. (1985), Mathematical Theory of Statistics: Statistical Experiments and Asymptotic Decision Theory, De Gruyter studies in mathematics, W. de Gruyter.
Paper not yet in RePEc: Add citation now
Swensen, A. R. (1985), âThe asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend,â Journal of Multivariate Analysis, 16, 54â70.
- Taniguchi, M. and Kakizawa, Y. (2000), Asymptotic Theory of Statistical Inference for Time Series, Springer Series in Statistics, Springer New York.
Paper not yet in RePEc: Add citation now
- van der Vaart, A. W. (1991), âAn Asymptotic Representation Theorem,â International Statistical Review / Revue Internationale de Statistique, 59, 97â121.
Paper not yet in RePEc: Add citation now
- van der Vaart, A. W. and Wellner, J. A. (1996), Weak Convergence and Empirical Processes, New York, NY, USA: Springer-Verlag New York, Inc.
Paper not yet in RePEc: Add citation now
- Wald, A. (1943), âTests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large,â Transactions of the American Mathematical Society, 54, 426â482. A Proofs of the main results Proof of Proposition 1. Combination of Assumptions 1 and 2 yields gâ² n,θ,λ, Ln,γ(h) Pn,γ,0 â N 0 â1 2 Ïγ(h) ! , Vγ ÏⲠΣⲠγ,21 Σγ,21Ï Ïγ(h) !! .
Paper not yet in RePEc: Add citation now