- Afriat, S. N. (1972). Eï¬ciency estimation of production functions. International Economic Review, 13(3), 568â598.
Paper not yet in RePEc: Add citation now
Aigner, D. J., Lovell, C. A. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production functions. Journal of Econometrics, 6(1), 21â37.
- Aigner, D., & Chu, S. (1968). On estimating the industry production function. American Economic Review, 58, 826â839.
Paper not yet in RePEc: Add citation now
Amemiya, T. (1974). The nonlinear two-stage least-squares estimator. Journal of Econometrics, 2, 105â111.
Amsler, C., & Schmidt, P. (2021). A survey of the use of copulas in stochastic frontier models. In C. F. Parmeter & R. C. Sickles (Eds.), Advances in eï¬ciency and productivity analysis (pp. 125â138). Cham, Switzerland: Springer Nature.
Amsler, C., Prokhorov, A., & Schmidt, P. (2014). Using copulas to model time dependence in stochastic frontier models. Econometric Reviews, 33(5â6), 497â522.
Amsler, C., Prokhorov, A., & Schmidt, P. (2016). Endogeneity in stochastic frontier models. Journal of Econometrics, 190, 280â288.
Amsler, C., Prokhorov, A., & Schmidt, P. (2017). Endogeneity environmental variables in stochastic frontier models. Journal of Econometrics, 199, 131â140.
Amsler, C., Prokhorov, A., & Schmidt, P. (2021). A new family of copulas, with application to estimation of a production frontier system. Journal of Productivity Analysis, 55, 1â4.
- Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12(2), 171â178.
Paper not yet in RePEc: Add citation now
Badunenko, O., & Kumbhakar, S. C. (2017). Economies of scale, technical change and persistent and time-varying cost eï¬ciency in Indian banking: Do ownership, regulation and heterogeneity matter? European Journal of Operational Research, 260, 789â803.
- Battese, G. E., & Coelli, T. J. (1988). Prediction of ï¬rm-level technical eï¬ciencies with a generalized frontier production function and panel data. Journal of Econometrics, 38, 387â399.
Paper not yet in RePEc: Add citation now
- Battese, G. E., & Coelli, T. J. (1992). Frontier production functions, technical eï¬ciency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis, 3, 153â169.
Paper not yet in RePEc: Add citation now
Battese, G. E., & Coelli, T. J. (1995). A model for technical ineï¬ciency eï¬ects in a stochastic frontier production function for panel data. Empirical Economics, 20(1), 325â332.
Battese, G. E., & Corra, G. S. (1977). Estimation of a production frontier model: With application to the pastoral zone oï¬ Eastern Australia. Australian Journal of Agricultural Economics, 21(3), 169â179.
Benabou, R., & Tirole, J. (2016). Mindful economics: The production, consumption, and value of beliefs. Journal of Economic Perspectives, 30(3), 141â164.
Bera, A. K., & Sharma, S. C. (1999). Estimating production uncertainty in stochastic frontier production function models. Journal of Productivity Analysis, 12(2), 187â210.
Bloom, N., Lemos, R., Sadun, R., Scur, D., & Van Reenen, J. (2016). International data on measuring management practices. American Economic Review, 106(5), 152â156.
- Bonanno, G., De Giovanni, D., & Domma, F. (2015). The âwrong skewnessâ problem: A re-speciï¬cation of stochastic frontiers. Journal of Productivity Analysis, 47(1), 49â64.
Paper not yet in RePEc: Add citation now
Bravo-Ureta, B. E., & Rieger, L. (1991). Dairy farm eï¬ciency measurement using stochastic frontiers and neoclassical duality. American Journal of Agricultural Economics, 73(2), 421â428.
- Burns, R. (2004). The simulated maximum likelihood estimation of stochastic frontier models with correlated error components. Sydney, Australia: The University of Sydney.
Paper not yet in RePEc: Add citation now
- Case, B., Ferrari, A., & Zhao, T. (2013). Regulatory reform and productivity change in indian banking. The Review of Economics and Statistics, 95(3), 1066â1077. Dependence modeling in stochastic frontier analysis ï± [23] Chamberlain, G. (1987). Asymptotic eï¬ciency in estimation with conditional moment restrictions. Journal of Econometrics, 34(2), 305â334.
Paper not yet in RePEc: Add citation now
- Chen, Y.-Y., Schmidt, P., & Wang, H.-J. (2014). Consistent estimation of the ï¬xed eï¬ects stochastic frontier model. Journal of Econometrics, 181(2), 65â76.
Paper not yet in RePEc: Add citation now
- Coelli, T. J. (1995). Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis. Journal of Productivity Analysis, 6(4), 247â268.
Paper not yet in RePEc: Add citation now
Cornwell, C., Schmidt, P., & Sickles, R. C. (1990). Production frontiers with cross-sectional and time-series variation in eï¬ciency levels. Journal of Econometrics, 46(2), 185â200.
- Dugger, R. (1974). An application of bounded nonparametric estimating functions to the analysis of bank cost and production functions. (Ph.D. thesis). University of North Carolina, Chapel Hill.
Paper not yet in RePEc: Add citation now
ElMehdi, R., & Hafner, M. (2014). Inference in stochastic frontier analysis with dependent error terms. Mathematics and Computers in Simulation, 102, 104â116.
- Gouriéroux, C., & Monfort, A. (1991). Simulation based inference in models with heterogeneity. Annales daÃconomie et de Statistique, 20/21, 69â107.
Paper not yet in RePEc: Add citation now
Greene, W. (2004). Distinguishing between heterogeneity and ineï¬ciency: Stochastic frontier analysis of the World Health Organizationâs panel data on national health care systems. Health Economics, 13(9), 959â980.
- Greene, W. H. (2005a). Fixed and random eï¬ects in stochastic frontier models. Journal of Productivity Analysis, 23(1), 7â32.
Paper not yet in RePEc: Add citation now
Greene, W. H. (2005b). Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. Journal of Econometrics, 126(2), 269â303.
Greene, W. H. (2010). A stochastic frontier model with correction for sample selection. Journal of Productivity Analysis, 34(1), 15â24.
- Guiso, L., Sapienza, P., & Zingales, L. (2006). Does culture aï¬ect economic outcomes? Journal of Economic Perspectives, 20(2), 23â48.
Paper not yet in RePEc: Add citation now
Hansen, C., McDonald, J. B., & Newey, W. K. (2010). Instrumental variables estimation with ï¬exible distributions. Journal of Business and Economic Statistics, 28, 13â25.
Hattori, T. (2002). Relative performance of U.S. and Japanese electricity distribution: An application of stochastic frontier analysis. Journal of Productivity Analysis, 18(3), 269â284.
- Heckman, J. J. (1976). Sample selection bias as a speciï¬cation error. Econometrica, 47(1), 153â161.
Paper not yet in RePEc: Add citation now
Henry, M., Kneller, R., & Milner, C. (2009). Trade, technology transfer and national eï¬ciency in developing countries. European Economic Review, 53(2), 237â254.
- Hjalmarsson, L., Kumbhakar, S. C., & Heshmati, A. (1996). DEA, DFA, and SFA: A comparison. Journal of Productivity Analysis, 7(2), 303â327.
Paper not yet in RePEc: Add citation now
- Hollingsworth, B. (2008). The measurement of eï¬ciency and productivity of health care delivery. Health Economics, 17(10), 1107â1128.
Paper not yet in RePEc: Add citation now
- Horrace, W. C., & Schmidt, P. (1996). Conï¬dence statements for eï¬ciency estimates from stochastic frontier models. Journal of Productivity Analysis, 7, 257â282.
Paper not yet in RePEc: Add citation now
Jondrow, J., Lovell, C. A. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical eï¬ciency in the stochastic frontier production function model. Journal of Econometrics, 19(2/3), 233â238.
- Kantorovich, L. (1939). Mathematical methods of organizing and planning production. Leningrad: Publishing House of Leningrad State University.
Paper not yet in RePEc: Add citation now
- Karakaplan, M. U., & Kutlu, L. (2013). Handling endogeneity in stochastic frontier analysis. Unpublished manuscript.
Paper not yet in RePEc: Add citation now
- Knittel, C. R. (2002). Alternative regulatory methods and ï¬rm eï¬ciency: Stochastic frontier evidence form the U.S. electricity industry. The Review of Economics and Statistics, 84(3), 530â540.
Paper not yet in RePEc: Add citation now
Koetter, M., Kolari, J. W., & Spierdijk, L. (2012). Enjoying the Quiet Life under Deregulation? Evidence from Adjusted Lerner Indices for U.S. Banks. The Review of Economics and Statistics, 94(2), 462â480.
- Kumbhakar, S. C. (1990). Production frontiers, panel data, and time-varying technical ineï¬ciency. Journal of Econometrics, 46(1), 201â211.
Paper not yet in RePEc: Add citation now
Kumbhakar, S. C., & Heshmati, A. (1995). Eï¬ciency measurement in Swedish dairy farms: An application of rotating panel data, 1976â88. American Journal of Agricultural Economics, 77(3), 660â674.
- Kumbhakar, S. C., & Lovell, C. A. K. (2000). Stochastic frontier analysis. Cambridge, United Kingdom: Cambridge University Press.
Paper not yet in RePEc: Add citation now
Kumbhakar, S. C., Tsionas, E. G., & Sipiläinen, T. (2009). Joint estimation of technology choice and technical eï¬ciency: An application to organic and conventional dairy farming. Journal of Productivity Analysis, 31(2), 151â161.
Kumbhakar, S. C., Wang, H.-J., & Horncastle, A. (2015). A practitioners guide to stochastic Frontier analysis using stata. Cambridge, United Kingdom: Cambridge University Press. 142 ï± Mikhail E. Mamonov et al.
Kuosmanen, T. (2012). Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model. Energy Economics, 34, 2189â2199.
Kutlu, L. (2010). Battese-Coelli estimator with endogenous regressors. Economics Letters, 109, 79â81.
Latruï¬e, L., Bravo-Ureta, B. E., Carpentier, A., Desjeux, Y., & Moreira, V. H. (2017). Subsidies and technical eï¬ciency in agriculture: Evidence from European dairy farms. American Journal of Agricultural Economics, 99, 783â799.
- Lee, L.-F., & Tyler, W. G. (1978). The stochastic frontier production function and average eï¬ciency: An empirical analysis. Journal of Econometrics, 7, 385â389.
Paper not yet in RePEc: Add citation now
- Lee, Y., & Schmidt, P. (1993). A production frontier model with ï¬exible temporal variation in technical eï¬ciency. In K. L. H. Fried & S. Schmidt (Eds.), The measurement of productive eï¬ciency. Oxford, United Kingdom: Oxford University Press.
Paper not yet in RePEc: Add citation now
Lien, G., Kumbhakar, S.C., & Hardaker, J.B. (2017). Accounting for risk in productivity analysis: an application to Norwegian dairy farming. Journal of Productivity Analysis, 47(3), 247â257.
- Liu, J., Sriboonchitta, J., Wiboonpongse, A., & DenÅux, T. (2021). A trivariate Gaussian copula stochastic frontier model with sample selection. International Journal of Approximate Reasoning, 137, 181â198.
Paper not yet in RePEc: Add citation now
McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica, 57(5), 995â1026.
- Meeusen, W., & van den Broeck, J. (1977a). Eï¬ciency estimation from Cobb-Douglas production functions with composed error. International Economic Review, 18(2), 435â444.
Paper not yet in RePEc: Add citation now
- Meeusen, W., & van den Broeck, J. (1977b). Technical eï¬ciency and dimension of the ï¬rm: Some results on the use of frontier production functions. Empirical Economics, 2(2), 109â122.
Paper not yet in RePEc: Add citation now
Mutter, R. L., Greene, W. H., Spector, W., Rosko, M. D., & Mukamel, D. B. (2013). Investigating the impact of endogeneity on ineï¬ciency estimates in the application of stochastic frontier analysis to nursing homes. Journal of Productivity Analysis, 39(1), 101â110.
- Nelsen, R. (2006). An introduction to copulas, 2nd ed. New York City, NY: Springer Science and Business Media.
Paper not yet in RePEc: Add citation now
- OâHagan, A., & Leonard, T. (1976). Bayes estimation subject to uncertainty about parameter constraints. Biometrika, 63(1), 201â203.
Paper not yet in RePEc: Add citation now
Olson, J. A., Schmidt, P., & Waldman, D. A. (1980). A Monte Carlo study of estimators of stochastic frontier production functions. Journal of Econometrics, 13, 67â82.
- Parmeter, C. F., & Kumbhakar, S. C. (2014). Eï¬ciency analysis: a primer on recent advances. Foundations and Trends in Econometrics, 7(3â4), 191â385.
Paper not yet in RePEc: Add citation now
Parmeter, C. F., & Zelenyuk, V. (2019). Combining the virtues of stochastic frontier and data envelopment analysis. Operations Research, 67, 1628â1658.
Pitt, M. M., & Lee, L.-F. (1981). The measurement and sources of technical ineï¬ciency in the Indonesian weaving industry. Journal of Development Economics, 9(1), 43â64.
Prokhorov, A., & Schmidt, P. (2009). Likelihood-based estimation in a panel setting: robustness, redundancy and validity of copulas. Journal of Econometrics, 153(1), 93â104.
- Richmond, J. (1974). Estimating the eï¬ciency of production. International Economic Review, 15(2), 515â521.
Paper not yet in RePEc: Add citation now
Schmidt, P. (1976). On the statistical estimation of parametric frontier production functions. The Review of Economics and Statistics, 58(2), 238â239.
Schmidt, P., & Lin, T.-F. (1984). Simple tests of alternative speciï¬cations in stochastic frontier models. Journal of Econometrics, 24(3), 349â361.
Schmidt, P., & Lovell, C. (1979). Estimating technical and allocative ineï¬ciency relative to stochastic production and cost frontiers. Journal of Econometrics, 9(3), 343â366.
Schmidt, P., & Lovell, C. (1980). Estimating stochastic production and cost frontiers when technical and allocative ineï¬ciency are correlated. Journal of Econometrics, 13(1), 83â100.
Schmidt, P., & Sickles, R. C. (1984). Production frontiers and panel data. Journal of Business and Economic Statistics, 2(2), 367â374.
Simar, L., & Wilson, P. W. (2010). Inferences from cross-sectional, stochastic frontier models. Econometric Reviews, 29(1), 62â98.
Simar, L., & Wilson, P. W. (2013). Estimation and Inference in Nonparametric Frontier Models: Recent developments and perspectives. Foundations and Trends in Econometrics, 5(2), 183â337.
Simar, L., & Wilson, P. W. (2015). Statistical Approaches for Nonparametric Frontier Models: A Guided Tour. International Statistical Review, 83(1), 77â110.
- Sipiläinen, T., & Oude Lansink, A. (2005). Learning in switching to organic farming. Nordic Association of Agricultural Scientists NJF Report, 1(1), 169â172.
Paper not yet in RePEc: Add citation now
Smith, M. (2008). Stochastic frontier models with dependent error components. The Econometrics Journal, 11(1), 172â192.
- Solow, R. (1957). Technical change and the aggregate production function. The Review of Economics and Statistics, 39(3), 312â320.
Paper not yet in RePEc: Add citation now
- Sriboonchitta, S., Liu, J., Wiboonpongse, A., & DenÅux, T. (2017). A double-copula stochastic frontier model with dependent error components and correction for sample selection. International Journal of Approximate Reasoning, 80, 174â184. Dependence modeling in stochastic frontier analysis ï± [84] Stiglitz, J. E., & Greenwald, B. C. (1986). Externalities in economies with imperfect information and incomplete markets. Quarterly Journal of Economics, 101(2), 229â264.
Paper not yet in RePEc: Add citation now
- Taube, R. (1988). Möglichkeiten der eï¬zienzmess ung von öï¬entlichen verwaltungen. Berlin: Duncker & Humbolt GmbH.
Paper not yet in RePEc: Add citation now
Tran, K. C., & Tsionas, E. G. (2013). GMM estimation of stochastic frontier models with endogenous regressors. Economics Letters, 118, 233â236.
Tran, K., & Tsionas, M. (2015). Endogeneity in stochastic frontier models: Copula approach without external instruments. Economics Letters, 133(C), 85â88.
Waldman, D. M. (1982). A stationary point for the stochastic frontier likelihood. Journal of Econometrics, 18(1), 275â279.
Wang, H.-J., & Ho, C.-W. (2010). Estimating ï¬xed-eï¬ect panel stochastic frontier models by model transformation. Journal of Econometrics, 157(2), 286â296.
- Wei, Z., & Kim, D. (2018). On multivariate asymmetric dependence using multivariate skew-normal copula-based regression. International Journal of Approximate Reasoning, 92, 376â391.
Paper not yet in RePEc: Add citation now
- Wei, Z., Conlon, E. M., & Wang, T. (2021). Asymmetric dependence in the stochastic frontier model using skew normal copula. International Journal of Approximate Reasoning, 128, 56â68.
Paper not yet in RePEc: Add citation now
- Wei, Z., Zhu, X., & Wang, T. (2021). The extended skew-normal-based stochastic frontier model with a solution to âwrong skewnessâ problem. Statistics, 55, 1387â1406.
Paper not yet in RePEc: Add citation now
- Weinstein, M. (1964). The sum of values from a normal and a truncated normal distribution (with some additional material, pp. 469-470). Technometrics, 6(4), 104â105.
Paper not yet in RePEc: Add citation now
- Wiboonpongse, A., Liu, J., Sriboonchitta, S., & DenÅux, T. (2015). Modeling dependence between error components of the stochastic frontier model using copula: Application to intercrop coï¬ee production in Northern Thailand. International Journal of Approximate Reasoning, 65, 34â44. 144 ï± Mikhail E. Mamonov et al.
Paper not yet in RePEc: Add citation now