[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178743
a(n) = A000041(n) mod 10.
2
1, 1, 2, 3, 5, 7, 1, 5, 2, 0, 2, 6, 7, 1, 5, 6, 1, 7, 5, 0, 7, 2, 2, 5, 5, 8, 6, 0, 8, 5, 4, 2, 9, 3, 0, 3, 7, 7, 5, 5, 8, 3, 4, 1, 5, 4, 8, 4, 3, 5, 6, 3, 9, 1, 5, 6, 3, 4, 0, 0, 7, 5, 6, 9, 0, 8, 0, 9, 5, 5, 8, 5, 3, 9, 0, 4, 1, 3, 4, 0, 6, 7, 5, 9, 0, 7, 2, 3, 9, 5, 3, 9, 7, 7, 0, 9, 4, 0, 6, 5, 2, 6, 9, 0, 5
OFFSET
0,3
COMMENTS
From Johannes W. Meijer, Jul 08 2011: (Start)
We observe for the last digit a(n) of the partition function p(n) = A000041(n) that the probabilities of p(d = 0) = 0.18 and p(d = 5) = 0.18 while for the other digits p(d = 1, 2, 3, 4, 6, 7, 8, 9) = 0.08, see the examples. Ramanujan, who had access to the first two hundred p(n) thanks to MacMahon, observed this anomaly and subsequently proved that p(5*n+4) mod 5 = 0, see the references and links.
The first digit of the partition function p(n) follows Benford’s Law. This law states that the probability of having first digit d, 1 <= d <= 9, is p(d) = log_10(1+1/d), see the crossrefs. (End)
REFERENCES
Robert Kanigel, The man who knew infinity: A life of the genius Ramanujan (1991) pp. 246-254 and pp. 299-307.
FORMULA
a(n) = p(n) mod 10 with p(n) = A000041(n) the partition function.
EXAMPLE
From Johannes W. Meijer, Jul 08 2011: (Start)
d p(N=200) p(N=2000) p(N=4000) p(N=6000)
0 0.16000 0.17750 0.17600 0.18067
1 0.08500 0.08150 0.08125 0.07833
2 0.08000 0.08400 0.08075 0.08033
3 0.10000 0.08350 0.08150 0.07917
4 0.05500 0.08050 0.07950 0.08233
5 0.18500 0.16900 0.17625 0.17817
6 0.08500 0.07500 0.07725 0.07867
7 0.09000 0.08600 0.08700 0.08283
8 0.06500 0.07650 0.07450 0.07517
9 0.09500 0.08650 0.08600 0.08433
Total 1.00000 1.00000 1.00000 1.00000 (End)
MATHEMATICA
Table[ Mod[ PartitionsP@n, 10], {n, 0, 111}]
PROG
(PARI) a(n) = numbpart(n) % 10; \\ Michel Marcus, Apr 21 2019
CROSSREFS
Cf. A141053 (F(5*n+3) and Benford’s Law). - Johannes W. Meijer, Jul 08 2011
Sequence in context: A086355 A053666 A101987 * A126052 A321128 A130138
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Jun 08 2010
EXTENSIONS
Edited by N. J. A. Sloane, Jun 08 2010
STATUS
approved