[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A111106
Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147.
4
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 7, 3, 1, 0, 105, 36, 12, 4, 1, 0, 945, 249, 64, 18, 5, 1, 0, 10395, 2190, 441, 100, 25, 6, 1, 0, 135135, 23535, 3807, 691, 145, 33, 7, 1, 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1
OFFSET
0,8
COMMENTS
Triangle T(n,k), 0 <= k <= n, given by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
FORMULA
T(n, k) = Sum_{j=0..n-k} T(n-1, k-1+j)*A111088(j).
Sum_{k=0..n} T(n, k) = A112934(n).
G.f.: 1/(1-xy/(1-x/(1-2x/(1-3x/(1-4x/(1-... (continued fraction). - Paul Barry, Jan 29 2009
Sum_{k=0..n} T(n,k)*2^(n-k) = A168441(n). - Philippe Deléham, Nov 28 2009
EXAMPLE
Rows begin:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 15, 7, 3, 1;
0, 105, 36, 12, 4, 1;
0, 945, 249, 64, 18, 5, 1;
0, 10395, 2190, 441, 100, 25, 6, 1:
0, 135135, 23535, 3807, 691, 145, 33, 7, 1;
0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1;
MAPLE
# Uses function PMatrix from A357368.
PMatrix(10, n -> doublefactorial(2*n-3)); # Peter Luschny, Oct 19 2022
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 13 2005, Dec 20 2008
STATUS
approved