[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A080247
Formal inverse of triangle A080246. Unsigned version of A080245.
8
1, 2, 1, 6, 4, 1, 22, 16, 6, 1, 90, 68, 30, 8, 1, 394, 304, 146, 48, 10, 1, 1806, 1412, 714, 264, 70, 12, 1, 8558, 6752, 3534, 1408, 430, 96, 14, 1, 41586, 33028, 17718, 7432, 2490, 652, 126, 16, 1, 206098
OFFSET
0,2
COMMENTS
Row sums are little Schroeder numbers A001003. Diagonal sums are generalized Fibonacci numbers A006603. Columns include A006318, A006319, A006320, A006321.
T(n,k) is the number of dissections of a convex (n+3)-gon by nonintersecting diagonals with exactly k diagonals emanating from a fixed vertex. Example: T(2,1)=4 because the dissections of the convex pentagon ABCDE having exactly one diagonal emanating from the vertex A are: {AC}, {AD}, {AC,EC} and {AD,BD}. - Emeric Deutsch, May 31 2004
For more triangle sums, see A180662, see the Schroeder triangle A033877 which is the mirror of this triangle. - Johannes W. Meijer, Jul 15 2013
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
Paul Barry, Laurent Biorthogonal Polynomials and Riordan Arrays, arXiv preprint arXiv:1311.2292 [math.CA], 2013.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
P. Flajolet and M. Noy, Analytic combinatorics of noncrossing configurations, Discrete Math. 204 (1999), 203-229.
Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
W.-j. Woan, The Lagrange inversion formula and divisibility properties, JIS 10 (2007) 07.7.8, example 5.
FORMULA
G.f.: 2/(2+y*x-y+y*(x^2-6*x+1)^(1/2))/y/x. - Vladeta Jovovic, Feb 16 2003
Essentially same triangle as triangle T(n,k), n > 0 and k > 0, read by rows; given by [0, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] DELTA A000007 where DELTA is Deléham's operator defined in A084938.
T(n, k) = T(n-1, k-1) + 2*Sum_{j>=0} T(n-1, k+j) with T(0, 0) = 1 and T(n, k)=0 if k < 0. - Philippe Deléham, Jan 19 2004
T(n, k) = (k+1)*Sum_{j=0..n-k} (binomial(n+1, k+j+1)*binomial(n+j, j))/(n+1). - Emeric Deutsch, May 31 2004
Recurrence: T(0,0)=1; T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n,k+1). - David Callan, Jul 03 2006
T(n, k) = binomial(n, k)*hypergeom([k - n, n + 1], [k + 2], -1). - Peter Luschny, Jan 08 2018
T(n,k) = (k+1)/(n+1)*Sum_{m=0..n-k} 2^m*binomial(n+1,m)*binomial(n-k-1,n-k-m). - Vladimir Kruchinin, Jan 10 2022
From Peter Bala, Sep 16 2024: (Start)
Riordan array (S(x), x*S(x)), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the g.f. of the large Schröder numbers A006318.
For integer m and n >= 1, (m + 2)*[x^n] S(x)^(m*n) = m*[x^n] (1/S(-x))^((m+2)*n). For cases of this identity see A103885 (m = 1), A333481 (m = 2) and A370102 (m = 3). (End)
EXAMPLE
Triangle starts:
[0] 1
[1] 2, 1
[2] 6, 4, 1
[3] 22, 16, 6, 1
[4] 90, 68, 30, 8, 1
[5] 394, 304, 146, 48, 10, 1
[6] 1806, 1412, 714, 264, 70, 12, 1
...
From Gary W. Adamson, Jul 25 2011: (Start)
n-th row = top row of M^n, M = the following infinite square production matrix:
2, 1, 0, 0, 0, ...
2, 2, 1, 0, 0, ...
2, 2, 2, 1, 0, ...
2, 2, 2, 2, 1, ...
... (End)
MAPLE
A080247:=(n, k)->(k+1)*add(binomial(n+1, k+j+1)*binomial(n+j, j), j=0..n-k)/(n+1):
seq(seq(A080247(n, k), k=0..n), n=0..9);
MATHEMATICA
Clear[w] w[n_, k_] /; k < 0 || k > n := 0 w[0, 0]=1 ; w[n_, k_] /; 0 <= k <= n && !n == k == 0 := w[n, k] = w[n-1, k-1] + w[n-1, k] + w[n, k+1] Table[w[n, k], {n, 0, 10}, {k, 0, n}] (* David Callan, Jul 03 2006 *)
T[n_, k_] := Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, -1];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Peter Luschny, Jan 08 2018 *)
PROG
(Sage)
def A080247_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return prec(n-1, k-1)-2*sum(prec(n, k+i-1) for i in (2..n-k+1))
return [(-1)^(n-k)*prec(n, k) for k in (1..n)]
for n in (1..10): print(A080247_row(n)) # Peter Luschny, Mar 16 2016
(Maxima)
T(n, k):=((k+1)*sum(2^m*binomial(n+1, m)*binomial(n-k-1, n-k-m), m, 0, n-k))/(n+1); /* Vladimir Kruchinin, Jan 10 2022 */
CROSSREFS
Cf. A000007, A033877 (mirror), A084938.
Sequence in context: A110681 A117852 A080245 * A078937 A167560 A132159
KEYWORD
nonn,tabl
AUTHOR
Paul Barry, Feb 15 2003
STATUS
approved