[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059551
Beatty sequence for Gamma(1/3).
2
2, 5, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 34, 37, 40, 42, 45, 48, 50, 53, 56, 58, 61, 64, 66, 69, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 99, 101, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 131, 133, 136, 139, 141, 144, 147, 150, 152, 155, 158, 160, 163
OFFSET
1,1
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence
FORMULA
a(n) = floor(n*Gamma(1/3)). - Michel Marcus, Jan 04 2015
MATHEMATICA
Table[Floor[n Gamma[1/3]], {n, 70}] (* Vincenzo Librandi, Jan 07 2015 *)
PROG
(PARI) { default(realprecision, 100); b=gamma(1/3); for (n = 1, 2000, write("b059551.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
(Magma) [Floor(n*Gamma(1/3)): n in [1..80]]; // Vincenzo Librandi, Jan 07 2015
CROSSREFS
Beatty complement is A059552.
Cf. A073005 (Gamma(1/3)).
Sequence in context: A247426 A047618 A236535 * A330094 A189535 A330214
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved