[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047618
Numbers that are congruent to {0, 2, 5} mod 8.
2
0, 2, 5, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 34, 37, 40, 42, 45, 48, 50, 53, 56, 58, 61, 64, 66, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 96, 98, 101, 104, 106, 109, 112, 114, 117, 120, 122, 125, 128, 130, 133, 136, 138, 141, 144, 146, 149, 152, 154, 157, 160, 162
OFFSET
1,2
FORMULA
a(n) = 3*(n - 1) - floor((n - 1)/3) - ((n - 1)^2 % 3). - Gary Detlefs, Mar 19 2010; corrected by L. Edson Jeffery, Sep 02 2014
a(n) = floor(8*(n-1)/3). - Gary Detlefs, Jan 02 2012
G.f.: x^2*(2+3*x+3*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Feb 03 2014
Conjecture: a(n)+a(n+1)+a(n+2) = 8*n-1; or a(n) = 8*(n-2)-a(n-1)-a(n-2)-1, n>3, with a(1)=0, a(2)=2, a(3)=5. - L. Edson Jeffery, Sep 02 2014
a(n) = a(n-1)+a(n-3)-a(n-4), n>4, with a(1)=0, a(2)=2, a(3)=5, a(4)=8. - L. Edson Jeffery, Sep 02 2014
a(n) = ((8*n-9)+2*sin((2*n*Pi)/3)/sqrt(3))/3. - L. Edson Jeffery, Sep 02 2014
a(3k) = 8k-3, a(3k-1) = 8k-6, a(3k-2) = 8k-8. - Wesley Ivan Hurt, Jun 10 2016
MAPLE
seq(3*n - floor(n/3) - (n^2 mod 3), n=0..51); # Gary Detlefs, Mar 19 2010
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1}, {0, 2, 5, 8}, 62] (* L. Edson Jeffery, Sep 02 2014 *)
Table[((8*n-9)+2*Sin[(2*n*Pi)/3]/Sqrt[3])/3, {n, 62}] (* L. Edson Jeffery, Sep 02 2014 *)
Table[8 n + {0, 2, 5}, {n, 0, 100}]//Flatten (* Vincenzo Librandi, Jun 11 2016 *)
PROG
(PARI) a(n) = floor(8*(n-1)/3); \\ Michel Marcus, Sep 03 2014
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 5]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Sequence in context: A039770 A236019 A247426 * A236535 A059551 A330094
KEYWORD
nonn,easy
STATUS
approved