[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A007117
a(0) = a(1) = 0; for n >= 2, a(n)*2^(n+2) + 1 is the smallest prime factor of the n-th Fermat number F(n) = 2^(2^n) + 1.
(Formerly M4586)
9
0, 0, 1, 8, 1024, 5, 1071, 116503103764643, 1209889024954, 1184, 11131, 39, 7, 82731770, 1784180997819127957596374417642156545110881094717, 9264, 3150, 59251857, 13, 33629
OFFSET
0,4
COMMENTS
a(14) might need to be corrected if F(14) turns out to have a smaller factor than 116928085873074369829035993834596371340386703423373313. F(20) is composite, but no explicit factor is known. - Jeppe Stig Nielsen, Feb 11 2010
REFERENCES
P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 71.
H. Riesel, ``Prime numbers and computer methods for factorization,'' Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see p. 377.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = (A093179(n) - 1)/2^(n+2) for n >= 2. - Jianing Song, Mar 02 2021
EXAMPLE
From Jianing Song, Mar 02 2021: (Start)
F(2) = 2^(2^2) + 1 = 1*2^4 + 1;
F(3) = 2^(2^3) + 1 = 5*2^5 + 1;
F(4) = 2^(2^4) + 1 = 1024*2^6 + 1;
F(5) = 2^(2^5) + 1 = (5*2^7 + 1) * (52347*2^7 + 1);
F(6) = 2^(2^6) + 1 = (1071*2^8 + 1) * (262814145745*2^8 + 1). (End)
PROG
(PARI) a(n) = if(n<2, 0, my(lim=2^(2^n-(n+2))); for(k=1, lim, my(p=k*2^(n+2)+1); if(Mod(2, p)^(2^n)==-1, return(k)))) \\ Jianing Song, Mar 02 2021
CROSSREFS
Cf. A093179.
Sequence in context: A260028 A176367 A298669 * A291831 A085533 A360773
KEYWORD
hard,nonn
EXTENSIONS
a(14)-a(19) added by Max Alekseyev, May 04 2010
STATUS
approved