[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A007015
a(n) = smallest k such that phi(n+k) = phi(k).
(Formerly M3212)
33
1, 4, 3, 8, 5, 24, 5, 13, 9, 20, 7, 48, 13, 16, 13, 26, 17, 52, 19, 37, 21, 44, 13, 96, 25, 34, 27, 32, 13, 124, 17, 52, 33, 41, 19, 104, 35, 52, 37, 65, 25, 123, 17, 73, 39, 92, 41, 183, 35, 76, 39, 68, 53, 156, 35, 64, 57, 116, 41, 248, 61, 73, 61, 104, 65, 144, 67, 82
OFFSET
1,2
COMMENTS
Sierpiński proved that a solution exists for each n>0.
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
R. K. Guy, Unsolved Problems Number Theory, Sect. B36
W. Sierpiński, Sur une propriété de la fonction phi(n), Publ. Math. Debrecen, 4 (1956), 184-185. - Jonathan Sondow, Sep 30 2012
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
MATHEMATICA
kphi[n_]:=Module[{k=1}, While[EulerPhi[n+k]!=EulerPhi[k], k++]; k]; Array[kphi, 70] (* Harvey P. Dale, Oct 24 2011 *)
PROG
(Haskell)
import Data.List (elemIndex)
import Data.Maybe (fromJust)
a007015 n = 1 + (fromJust $
elemIndex 0 $ zipWith (-) a000010_list $ drop n a000010_list)
-- Reinhard Zumkeller, Feb 10 2012
(PARI) a(n)=k=1; while(eulerphi(k)!=eulerphi(n+k), k++); k
vector(100, n, a(n)) \\ Derek Orr, May 05 2015
CROSSREFS
Cf. A000010.
Sequence in context: A022998 A082895 A086938 * A354139 A114562 A189042
KEYWORD
nonn,nice
EXTENSIONS
More terms from Jud McCranie, Dec 24 1999
STATUS
approved