[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A007014
Largest prime <= Product prime(k).
(Formerly M1546)
8
2, 5, 29, 199, 2309, 30029, 510481, 9699667, 223092827, 6469693189, 200560490057, 7420738134751, 304250263527209, 13082761331669941, 614889782588491343, 32589158477190044657, 1922760350154212638963, 117288381359406970983181, 7858321551080267055878989
OFFSET
1,1
COMMENTS
A057705 contains terms of a(n) such that A002110(n) - a(n) = 1. -Michael De Vlieger, May 15 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
From Michael De Vlieger, May 15 2017: (Start)
a(n) = prime(A000849(n)).
a(n) = A151799(A002110(n)). (End)
EXAMPLE
From Michael De Vlieger, May 15 2017: (Start)
a(1) = 2 since A002110(1) = 2. 2 is prime thus the largest prime <= 2 = 2.
a(2) = 5 since A002110(2) = 6. 5 is the largest prime <= 6. (End)
MATHEMATICA
Array[Abs@ NextPrime[Product[Prime@ i, {i, #}], -1] &, 14] (* Michael De Vlieger, May 15 2017 *)
PROG
(PARI) lista(n) = {prd = 1; for (i=1, n, prd *= prime(i); print1(precprime(prd), ", "); ); } \\ Michel Marcus, Jun 17 2013
(PARI) a(n)=precprime(prod(i=1, n, prime(i))) \\ Charles R Greathouse IV, Jun 17 2013
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Corrected by Jud McCranie, Jan 03 2001
More terms from Michael De Vlieger, May 15 2017
STATUS
approved