[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A002857
Number of Post functions of n variables.
(Formerly M3078 N1249)
5
1, 3, 20, 996, 9333312, 6406603084568576, 16879085743296493582043922521915392, 717956902513121252476003434439730211917452457474409186632352788205535232
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Roger F. Wheeler, Complete propositional connectives. Z. Math. Logik Grundlagen Math. 7, 1961, 185-198.
LINKS
Jürgen Heller, Identifiability in probabilistic knowledge structures, J. Math. Psychol. 77, 46-57 (2017).
R. F. Wheeler, Complete propositional connectives, Z. Math. Logik Grundlagen Math. 7 1961 185-198. [Annotated scanned copy]
R. F. Wheeler, An asymptotic formula for the number of complete propositional connectives, Z. Math. Logik Grundlagen Math. 8 (1962), 1-4. [Annotated scanned copy]
FORMULA
Conjecture: a(n) = A055621(n) - A055152(n). - R. J. Mathar, Oct 14 2022
MAPLE
b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
end:
a:= n-> b(n$2, [])/4:
seq(a(n), n=1..8); # Alois P. Heinz, Aug 14 2019
MATHEMATICA
b[n_, i_, l_] := If[n==0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][LCM @@ l], If[i < 1, 0, Sum[b[n - i j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
a[n_] := b[n, n, {}]/4;
Array[a, 8] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)
CROSSREFS
Equals A000612/2 and A003180/4.
Sequence in context: A108699 A162134 A296408 * A345328 A203314 A174652
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Feb 23 2000
STATUS
approved