[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a002857 -id:a002857
     Sort: relevance | references | number | modified | created      Format: long | short | data
Complete Post functions of n variables.
(Formerly M2098 N0830)
+10
6
0, 2, 16, 980, 9332768
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Wheeler, Roger F.; Complete propositional connectives. Z. Math. Logik Grundlagen Math. 7 1961 185-198.
Wheeler, Roger F.; Complete connectives for the 3-valued propositional calculus. Proc. London Math. Soc. (3) 16 1966 167-191.
LINKS
R. F. Wheeler, Complete propositional connectives, Z. Math. Logik Grundlagen Math. 7 1961 185-198. [Annotated scanned copy]
R. F. Wheeler, An asymptotic formula for the number of complete propositional connectives, Z. Math. Logik Grundlagen Math. 8 (1962), 1-4. [Annotated scanned copy]
R. F. Wheeler, Complete connectives for the 3-valued propositional calculus, Proc. London Math. Soc. (3) 16 (1966), 167-191. [Annotated scanned copy]
CROSSREFS
KEYWORD
nonn,more
STATUS
approved
Proper covers of an unlabeled n-set.
+10
4
0, 1, 14, 956, 9331320, 6406603065901952, 16879085743296493569230716352778240, 717956902513121252476003434439730211883694285987816199468264943161704448
OFFSET
1,3
LINKS
Heller, Jürgen Identifiability in probabilistic knowledge structures. J. Math. Psychol. 77, 46-57 (2017).
Eric Weisstein's World of Mathematics, Proper covers
FORMULA
a(n) = (A003180(n) - 2*A003180(n-1))/4.
Apparently a(n) = A002857(n) - A000612(n-1). - R. J. Mathar, Apr 22 2007
MAPLE
b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
end:
a:= n-> (b(n$2, [])-2*b(n-1$2, []))/4:
seq(a(n), n=1..8); # Alois P. Heinz, Aug 14 2019
MATHEMATICA
b[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[ 2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}];
a[n_] := (b[n] - 2 b[n - 1])/4;
a /@ Range[8] (* Jean-François Alcover, Feb 19 2020, after Alois P. Heinz in A000612 *)
CROSSREFS
See A007537 for labeled case. Cf. A055621.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 14 2000
EXTENSIONS
More terms from David Wasserman, Mar 21 2002
STATUS
approved
Number of Post functions of n variables which fail to satisfy Post's second condition.
+10
1
1, 1, 4, 16, 544
OFFSET
1,3
LINKS
R. F. Wheeler, Complete propositional connectives, Z. Math. Logik Grundlagen Math. 7 1961 185-198. [Annotated scanned copy]
R. F. Wheeler, An asymptotic formula for the number of complete propositional connectives, Z. Math. Logik Grundlagen Math. 8 (1962),1-4. [Annotated scanned copy]
CROSSREFS
Equals A002857 - A002543.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Oct 06 2015
STATUS
approved
Nearest integer to 2^(2^n)/(4*n!).
+10
1
1, 2, 11, 683, 8947849, 6405119470038039, 16879085660760836481318184892448820, 717956902513121251386228825698709746114025202539934052824017757985572480
OFFSET
1,2
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..11
R. F. Wheeler, An asymptotic formula for the number of complete propositional connectives, Z. Math. Logik Grundlagen Math. 8 (1962), 1-4. [Annotated scanned copy]
CROSSREFS
An approximation to A002857.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 06 2015
STATUS
approved

Search completed in 0.007 seconds