|
|
|||
|
Dr. Zhiming
Zhao home page |
|
||
|
Multiscale Networked Systems (MNS) University of Amsterdam Email: z.zhao[at]uva.nl Tel: +31 641265121 Office: Room L5.40, Lab 42 Science Park 900, 1098XH Amsterdam the Netherlands |
We are looking for 1. Part time programmers 2. Post doctors 3. PhD
students... |
||
|
|
|||
I received my Ph.D. in computer science in
2004 from the University
of Amsterdam (UvA). I am an associate
professor and the
chair of the Multiscale
Network Systems (MNS) research group
in the Informatics Institute (IvI) at UvA. I am the technical manager of
the Virtual Lab and Innovation Center (VLIC)
of LifeWatch ERIC, a European
research infrastructure in ecology and biodiversity science. My research focuses on
quality-critical distributed computing, data-intensive workflow management, virtual
research environments, and digital twins. I am the Co-PI of the Dutch LTER-LIFE project and coordinate the UvA
effort in EU projects ENVRI-HUB
next, EVERSE, OSCARS and BlueCloud 2026 to develop Digital Twin
Virtual Research Environment, research assets search engine, and Cloud
automation and optimization solutions. I coordinated the
project SWITCH (Software
Workbench for interactive time-critical and highly self-adaptive cloud
applications). I led the Data for Science theme in the
environmental science cluster project ENVRIPLUS, and the technical
development work packages in ENVRI-FAIR, ARTICONF and CLARIFY projects. I am an IEEE Senior member
and the managing editor of the Journal of Cloud
Computing. |
||||
|
Research: Quality Critical Applications on Programmable
Infrastructures |
|
|
|
In both scientific and
industrial contexts, there are distributed application systems which 1. have very high
business value (e.g., on-demand business collaboration platforms), or social
impact (e.g., for early warning of disasters); and 2. have very critical
requirements for Quality of Service (QoS) (e.g., tsunami emergency response
time) or quality of experience (QoE) (e.g., delivery of ultra-high-definition
television or collaborative business interactions); but 3. are very difficult to
develop and operate because of their distributed nature and the high
requirements for the runtime environment, and in particular, the
sophisticated optimization mechanisms needed for developing and integrating
the system components. Cloud environments provide
virtualized, elastic, controllable, and quality on-demand services for
supporting complex application systems. However, developing, deploying, and
executing quality-critical applications in programmable infrastructure is
still difficult and challenging due to a lack of effective programming and
control mechanisms. My research interests have
revolved around modeling, developing, controlling, and optimizing
such Distributed Quality-Critical Systems. I
specifically focus on novel models for programming, executing, and optimizing
such applications on programmable infrastructures, such as Cloud-
and software-defined networking technologies. My basic approach is to use
autonomous agent technologies to decompose system complexity, to develop
distributed control and optimization intelligence by combining both
application logic and infrastructure programmability, and to investigate
self-adaptable cooperative control models for Cloud-based quality-critical
systems. |
|
|
||
|
Leader: Dr. Zhiming Zhao Postdoc researchers and developers: ·
Nafis Islam, ENVRI community knowledge base (2024-) ·
Koen Greuell, VRE developer (2024-) ·
Dr. Nafiseh Soveizi, Digital twin composition and optimization
(2024-) ·
Dr. Gabriel Pelouze, NaaVRE, VL (2023-) ·
Dr. Spiros Koulouzis, DRIP, CONF, VRE and
use cases (2017-) Ph.D. students: ·
Paul Daniëlse, AI enhanced quality critical cloud
native applications (2024-) ·
Stefanie Boss, legal anomalies in decentralized
infrastructure (2023-) ·
Yuandou Wang, Distributed data processing (2020-) ·
Na Li, Knowledge discovery (2020-) Former members: ·
Dr. Peide Zhu, VRE search engine (2024-2024) ·
Dr. Siamak Farshidi, Cognitive digital twins
(2024-2024) ·
HongYun Liu, Cloud resource management (2019-2024) ·
Zijie Liu, Machine learning and job scheduling
(2023-) ·
Yi Chen, Machine learning and job scheduling (2023-) ·
Ruyue Xin, Virtual Infrastructure control and
adaptation (2019-)[thesis] ·
Dr. Yangjun Zhang, Knowledge discovery (2023-2023) ·
J.M. van der Stoep, NaaVRE developer (2022-2023) ·
Zhengqiu Zhu, Incentive models in crowd applications
(2020-2022) ·
Dr. Uraz Odyurt, AI and cloud computing (2021-2022) ·
Zeshun Shi, Trustworthy Virtual infrastructure
(2018-2022) [thesis] ·
Mr. Ning Chen, Sensor network and robustness
(2021-2022) ·
Riccardo Bianchi (M.Sc), DevOps (2020-2022) ·
Dr. Peng Chen, Cloud infrastructure optimization
(2020-2021) ·
Dr. Xiaofeng Liao, Alignment, annotation
(2017-2020) ·
Dr. Paul Martin, Semantic information linking
(2015-2018) ·
Dr. Arie Taal, Time critical applications
(2016-2019) ·
Junchao Wang, Virtual Infrastructure planning
(2015-2020) ·
Hu Yang, Time critical application deployment
(2015-2019) [thesis] ·
Huan Zhou, Virtual infrastructure provisioning
and DevOps (2015-2019) [thesis] |
|
|
|
|
Funding and
projects |
|
|
|
|
Via University of Amsterdam Via LifeWatch
ERIC Virtual Lab and Innovation Center (VLIC) |
|
|
|
Via UvA 1.
NWO LTER-LIFE
(a research infrastructure to develop Digital Twins of ecosystems in a
changing world), Large-Scale Research Infrastructure (LSRI), Duration August
2023-August 2032. 2.
EU H-Europe ENVRI-Hub
Next (ENVironmental Research Infrastructures delivering an open
access Hub and NEXT-level interdisciplinary research framework providing
services for advancing science and society). Grant No. 101131141. HORIZON-INFRA-2023-DEV-01
call. Duration 2024-2027. 3.
EU H-Europe EVERSE
(European Virtual Institute for Research Software Excellence). Grant No.
101129744. HORIZON-INFRA-2023-EOSC-01-02
call. Duration 2024-2027. 4.
EU H-Europe OSCARS
(Open Science Clusters’ Action for Research and Society). Grant No.
101129751. HORIZON-INFRA-2023-EOSC-01 call. Duration 2024-2027. (Third party
via LifeWatch ERIC) 5.
EU H-Europe BlueCloud-2026 (A
federated European FAIR and Open Research Ecosystem for Oceans, Seas, and
inland waters). Grant No. 101094227. HORIZON-INFRA-2022-EOSC-01-03
call. Duration: Jan 2023-June 2026. Via LifeWatch 6.
EU H-Europe BioDT
(Biodiversity Digital Twin for Advanced Modelling, Simulation and Prediction
Capabilities) Grant No. 101057437.
HORIZON-INFRA-2021-TECH-01-01 call. Duration: June 2022- May 2025. (as
LifeWatch VLIC) Finished
projects 7.
EU H2020 CLARIFY (CLoud ARtificial
Intelligence For pathologY). Grant No. 860627. H2020-MSCA-ITN-2019
call. Duration: Nov 2019-Oct 2023. 8.
EU H2020 ENVRIFAIR (ENVironmental Research Infrastructures
building Fair services Accessible for society, Innovation and Research).
Grant No 824068. H2020-INFRAEOSC-2018-2
call. Duration: January 2019-December 2022. 9.
EU H2020 BLUECLOUD (Blue-Cloud: Piloting
innovative services for Marine Research & the Blue Economy).H2020-BG-2018-2020.
Grant No. 862409. Duration: Nov 2019-Oct 2022. 10. EU H2020 ARTICONF (smART socIal media eCOsytstem in
a blockchaiN Federated environment). Grant No 825134. H2020-ICT-2018-2
call. Duration: January 2019-December 2021. 11. EU H2020 ENVRIPLUS (ENVironmental Research
Infrastructures Providing shared soLUtions for Science and
society). Leader of the Data for Science Theme. Grant No. 654182 (INFRADEV-4-2014-2015).
Duration: May 2015- April 2019, Project website: www.envriplus.eu. 12. EU H2020 VRE4EIC (A
Europe-wide interoperable Virtual Research Environment to Empower
multidisciplinary research communities and accelerate Innovation and
Collaboration). Grant number 676247. H2020-EINFRA-2015-1.
Duration October 2015- September 2018. 13. EU H2020 SWITCH (Software
Workbench for Interactive, Time Critical and Highly self-adaptive cloud
applications). Grant No 643963. H2020-ICT
9-2014-1 call: Tools and methods for software development. Duration:
February 2015- January 2018. (SWITCH project). Participated projects 14. EU FP7 ENVRI.
Task leader, task 3.4: linking data and infrastructure - Common operations of
Environmental Research Infrastructure (ENVRI). Grant number 283465, |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
Community |
|
|
|
Editorial board 1.
Managing editor, Journal of cloud computing,
advances, systems and applications 2.
International journal of: Blockchains:
research and applications Organizer/co-organizer
1. Special session: Using heterogeneous environmental data
for system-level science, 2018, Vienna, EGU
1. in Digital
Infrastructure for research 2016, Krakow, Poland 2. in Digital Infrastructure for research 2017,
Brussels, Belgium
Summer school 1. International summer school on data
management in environmental and earth sciences (2018
| 2019
| 2020
| 2021
| 2022) Workshop/Panel
chair
Program
committee
|
|
|||
|
|
|
||
|
|
|
||
|
|
|||
|
|
|
||
|
Journals 1.
Li, N.,
Farshidi, S. & Zhao, Z. Search Multiple Types of Research Assets
From Jupyter Notebook. Softw Pract Exp spe.3406 (2025) https://doi.org/10.1002/spe.3406 2.
Wang, Y.,
Tripathi, S., Farshidi, S., Zhao, Z.:
D-VRE: From a Jupyter-enabled Private Research Environment to Decentralized
Collaborative Research Ecosystem. Blockchain: Research and Applications.
100244 (2024). https://doi.org/10.1016/j.bcra.2024.100244. 3.
Li, N., Qi, Y.,
Li, C., Zhao, Z.: Active Learning
for Data Quality Control: A Survey. J. Data and Information Quality. 3663369
(2024). https://doi.org/10.1145/3663369. 4.
Petzold, A.,
Bundke, U., Hienola, A., Laj, P., Lund Myhre, C., Vermeulen, A., Adamaki, A.,
Kutsch, W., Thouret, V., Boulanger, D., Fiebig, M., Stocker, M., Zhao, Z., Asmi, A.: Opinion: New
directions in atmospheric research offered by research infrastructures
combined with open and data-intensive science. Atmos. Chem. Phys. 24,
5369–5388 (2024). https://doi.org/10.5194/acp-24-5369-2024.
5.
Xin, R., Chen,
P., Grosso, P., Zhao, Z.:
A fine-grained robust performance diagnosis framework for run-time cloud
applications. Future Generation Computer Systems. 155, 300–311 (2024). https://doi.org/10.1016/j.future.2024.02.014.
6.
Song, Y., Xin,
R., Chen, P., Zhang, R., Chen, J., Zhao,
Z.: Autonomous selection of the fault classification models for
diagnosing microservice applications. Future Generation Computer Systems.
153, 326–339 (2024). https://doi.org/10.1016/j.future.2023.12.005. 7.
Jiang, W., Luo,
T., Liang, Z., Chen, K., He, J., Zhao,
Z., Wen, J., Zhao, L., Song, W.: FBENet: Feature-Level Boosting Ensemble
Network for Hashimoto’s Thyroiditis Ultrasound Image Classification. IEEE J.
Biomed. Health Inform. 28, 5360–5369 (2024). https://doi.org/10.1109/jbhi.2024.3414389.
8.
Yuan,
S., Chen, J., Jiang, W., Zhao, Z., Guo, S.: LHN etV2: A Balanced L
ow-cost H ybrid Network for Single Image Dehazing. IEEE Trans. Multimedia.
1–14 (2024). https://doi.org/10.1109/TMM.2024.3377133.
9.
Cheng,
L., Wang, Y., Cheng, F., Liu, C., Zhao, Z., Wang, Y.: A Deep
Reinforcement Learning-Based Preemptive Approach for Cost-Aware Cloud Job
Scheduling. IEEE Trans. Sustain. Comput. 1–12 (2023). https://doi.org/10.1109/TSUSC.2023.3303898.
10. Jiang, W., Chen, K., Liang, Z., Luo, T., Yue, G., Zhao,
Z., Song, W., Zhao, L., Wen, J.: HT-RCM: Hashimoto’s Thyroiditis
Ultrasound Image Classification Model based on Res-FCT and Res-CAM. IEEE J.
Biomed. Health Inform. 1–11 (2023). https://doi.org/10.1109/JBHI.2023.3331944.
11. Tabatabaei, Z., Wang, Y., Colomer, A., Oliver Moll,
J., Zhao, Z., Naranjo, V.: WWFedCBMIR: World-Wide Federated
Content-Based Medical Image Retrieval. Bioengineering. 10, 1144 (2023). https://doi.org/10.3390/bioengineering10101144
12. Rito Lima, I., Filipe, V., Marinho, C., Ulisses, A.,
Chakravorty, A., Hristov, A., Saurabh, N., Zhao, Z., Xin, R., Prodan,
R.: ARTICONF decentralized social media platform for democratic crowd
journalism. Soc. Netw. Anal. Min. 13, 116 (2023). https://doi.org/10.1007/s13278-023-01110-y.
13. Zhang, J., Cheng, L., Liu, C., Zhao, Z., Mao,
Y.: Cost-aware scheduling systems for real-time workflows in cloud: An
approach based on Genetic Algorithm and Deep Reinforcement Learning. Expert
Systems with Applications. 234, 120972 (2023). https://doi.org/10.1016/j.eswa.2023.120972
14. Li, J., Li, J., Xie, C., Liang, Y., Qu, K., Cheng,
L., Zhao, Z.: PipCKG-BS: A Method to Build Cybersecurity Knowledge
Graph for Blockchain Systems via the Pipeline Approach. J CIRCUIT SYST COMP.
2350274 (2023). https://doi.org/10.1142/S0218126623502742
15. Xin, R., Chen, P., Zhao, Z.: CausalRCA:
Causal inference based precise fine-grained root cause localization for
microservice applications. Journal of Systems and Software. 111724 (2023). https://doi.org/10.1016/j.jss.2023.111724. 16. Liu, H., Xin, R., Chen, P., Gao, H., Grosso, P., Zhao,
Z.: Robust-PAC time-critical workflow offloading in edge-to-cloud
continuum among heterogeneous resources. J Cloud Comp. 12, 58 (2023). https://doi.org/10.1186/s13677-023-00434-6. 17.
Liu, H., Chen, P., Ouyang, X., Gao, H., Yan, B., Grosso, P., Zhao,
Z.: Robustness challenges in Reinforcement Learning based time-critical
cloud resource scheduling: A Meta-Learning based solution. Future Generation
Computer Systems. 146, 18–33 (2023). https://doi.org/10.1016/j.future.2023.03.029. 18. Song, Y., Xin, R., Chen, P., Zhang, R., Chen, J., Zhao,
Z.: Identifying performance anomalies in fluctuating cloud environments:
A robust correlative-GNN-based explainable approach. Future Generation
Computer Systems. 145, 77–86 (2023). https://doi.org/10.1016/j.future.2023.03.020.[OA]. 19. Xin, R., Liu, H., Chen, P., Zhao, Z.: Robust
and accurate performance anomaly detection and prediction for cloud
applications: a novel ensemble learning-based framework. J Cloud Comp. 12, 7
(2023). https://doi.org/10.1186/s13677-022-00383-6.
20. Launet, L., Wang, Y., Colomer, A., Igual, J.,
Pulgarín-Ospina, C., Koulouzis, S., Bianchi, R., Mosquera-Zamudio, A.,
Monteagudo, C., Naranjo, V., Zhao, Z.: Federating Medical Deep
Learning Models from Private Jupyter Notebooks to Distributed Institutions.
Applied Sciences. 13, 919 (2023). https://doi.org/10.3390/app13020919.
21. Shi, Z., de Laat, C., Grosso, P., Zhao, Z.:
Integration of Blockchain and Auction Models: A Survey, Some Applications,
and Challenges. IEEE Commun. Surv. Tutorials. 1–1 (2022). https://doi.org/10.1109/COMST.2022.3222403. 22. Zhu, Z., Ai, C., Chen, H., Chen, B., Duan, W., Qiu,
X., Lu, X., He, M., Zhao, Z., Liu, Z.: Understanding the Necessity and
Economic Benefits of Lockdown Measures to Contain COVID-19. IEEE Trans.
Comput. Soc. Syst. 1–13 (2022). https://doi.org/10.1109/TCSS.2022.3194639
23. Xiao, H., Li, P., Zeng, H., Liang, T., Jiang, W., Zhao,
Z.: Metric learning-based whole health indicator model for industrial
robots. Int J of Intelligent Sys. int.23008 (2022). https://doi.org/10.1002/int.23008
24. Yuan, S., Wang, Y., Liang, T., Jiang, W., Lin, S., Zhao,
Z.: Real‐time recognition and warning of mask wearing based on improved
YOLOv5 R6.1. Int J of Intelligent Sys. 37, 9309–9338 (2022). https://doi.org/10.1002/int.22994.
25. Shi, Z., Ivankovic, V., Farshidi, S., Surbiryala,
J., Zhou, H., Zhao, Z.: AWESOME: an auction and witness enhanced SLA
model for decentralized cloud marketplaces. J Cloud Comp. 11, 27 (2022). https://doi.org/10.1186/s13677-022-00292-8 26. Zhu, Z., Chen, B., Chen, H., Qiu, S., Fan, C., Zhao,
Y., Guo, R., Ai, C., Liu, Z., Zhao, Z., Fang, L., Lu, X.: Strategy
evaluation and optimization with an artificial society toward a Pareto
optimum. The Innovation. 3, 100274 (2022). https://doi.org/10.1016/j.xinn.2022.100274
27. Chen, P., Liu, H., Xin, R., Carval, T., Zhao, J.,
Xia, Y., Zhao, Z.: Effectively Detecting Operational Anomalies In
Large-Scale IoT Data Infrastructures By Using A GAN-Based Predictive Model.
The Computer Journal. 65, 2909–2925 (2022). https://doi.org/10.1093/comjnl/bxac085
28. Shi, Z., Zhou, H., De Laat, C., Zhao, Z.: A
Bayesian game-enhanced auction model for federated cloud services using
blockchain. Future Generation Computer Systems. 136, 49–66 (2022). https://doi.org/10.1016/j.future.2022.05.017 29. Zhao, Z., Koulouzis, S., Bianchi, R., Farshidi, S., Shi, Z.,
Xin, R., Wang, Y., Li, N., Shi, Y., Timmermans, J., Kissling, W.D.:
Notebook-as-a-VRE (NaaVRE): From private notebooks to a collaborative cloud
virtual research environment. Softw Pract Exp. spe.3098 (2022). https://doi.org/10.1002/spe.3098. 30. Wang, Y., Koulouzis, S., Bianchi, R., Li, N., Shi,
Y., Timmermans, J., Kissling, W.D., Zhao, Z.: Scaling Notebooks as
Re-configurable Cloud Workflows. Data Intelligence. 4, 409–425 (2022). https://doi.org/10.1162/dint_a_00140. 31. Wittenburg, P., Hardisty, A., Franc, Y.L.,
Mozaffari, A., Peer, L., Skvortsov, N.A., Zhao, Z., Spinuso, A.:
Canonical Workflows to Make Data FAIR. Data Intelligence. 1–20 (2022). https://doi.org/10.1162/dint_a_00132 32. Jiang, W., Pan, S., Lu, C., Zhao, Z., Lin,
S., Xiong, M., He, Z.: Label entropy-based cooperative particle swarm
optimization algorithm for dynamic overlapping community detection in complex
networks. Int J Intell Syst. int.22673 (2021). https://doi.org/10.1002/int.22673. 33. Farshidi, S., Liao, X., Li, N., Goldfarb, D.,
Magagna, B., Stocker, M., Jeffery, K., Thijsse, P., Pichot, C., Petzold, A., Zhao,
Z.: Knowledge sharing and discovery across heterogeneous research
infrastructures. Open Res Europe. 1, 68 (2021). https://doi.org/10.12688/openreseurope.13677.1.
34. Karandikar, N., Abhishek, R., Saurabh, N., Zhao,
Z., Lercher, A., Marina, N., Prodan, R., Rong, C., Chakravorty, A.:
Blockchain-based prosumer incentivization for peak mitigation through
temporal aggregation and contextual clustering. Blockchain: Research and
Applications. 2, 100016 (2021). https://doi.org/10.1016/j.bcra.2021.100016 35. Saurabh, N., Rubia, C., Palanisamy, A., Koulouzis,
S., Sefidanoski, M., Chakravorty, A., Zhao, Z., Karadimce, A., Prodan,
R.: The ARTICONF Approach to Decentralized Car-Sharing. Blockchain: Research
and Applications. 100013 (2021). https://doi.org/10.1016/j.bcra.2021.100013.
36. Zhou, H., Shi, Z., Ouyang, X. Zhao, Z.,
Building a blockchain-based decentralized ecosystem for cloud and edge
computing: an ALLSTAR approach and empirical study. Peer-to-Peer Network
Application. (2021). https://doi.org/10.1007/s12083-021-01198-z
[OA] 37. Calyam, P., Wilkins-Diehr, N., Miller, M., Brookes,
E.H., Arora, R., Chourasia, A., Jennewein, D.M., Nandigam, V., Drew LaMar,
M., Cleveland, S.B., Newman, G., Wang, S., Zaslavsky, I., Cianfrocco, M.A.,
Ellett, K., Tarboton, D., Jeffery, K.G., Zhao, Z., González - Aranda,
J., Perri, M.J., Tucker, G., Candela, L., Kiss, T., Gesing, S.: Measuring
success for a future vision: Defining impact in science gateways/virtual
research environments. Concurrency Computat Pract Exper. cpe.6099 (2020). https://doi.org/10.1002/cpe.6099. 38. Zhu, Z., Chen, B., Liu, W., Zhao, Y., Liu, Z., and Zhao Z., A Cost-Quality Beneficial
Cell Selection Approach for Sparse Mobile Crowdsensing With Diverse Sensing
Costs, in IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3831-3850, 1 March1, 2021, https://doi.org/10.1109/JIOT.2020.3024833.[OA]. 39. Zhang, L., Jiang, W., Zhao, Z.: Short -text
feature expansion and classification based on nonnegative matrix
factorization. Int Journal of Intelligent Systems. int.22290 (2020)https://doi.org/10.1002/int.22290[OA]. 40. Uriarte, R.B., Zhou, H., Kritikos, K., Shi, Z., Zhao, Z., De Nicola, R.: Distributed
service- level agreement management with smart contracts and blockchain.
Concurrency Computat Pract Exper. (2020). https://doi.org/10.1002/cpe.5800. 41. Hu, Y., de Laat, C., Zhao, Z.: Optimizing Service Placement for Microservice
Architecture in Clouds. Applied Sciences. 9, 4663 (2019). https://doi.org/10.3390/app9214663. 42. Hu, Y., Zhou, H., de Laat, C., Zhao, Z.: Concurrent container scheduling on heterogeneous
clusters with multi-resource constraints. Future Generation Computer Systems.
102, 562–573 (2020). https://doi.org/10.1016/j.future.2019.08.025. 43. Remy, L., Ivanovic, D., Theodoridou, M., Kritsotaki,
A., Martin, P., Bailo, D., Sbarra, M., Zhao,
Z., Jeffery, K.: Building an Integrated Enhanced Virtual Research
Environment Metadata Catalogue. The Electronic Library. (2019) https://doi.org/10.1108/EL-09-2018-0183
[OA]. 44. Zhou, H., Hu, Y., Ouyang, X., Su, J., Koulouzis, S.,
Laat, C., Zhao, Z.: CloudsStorm: A
framework for seamlessly programming and controlling virtual infrastructure
functions during the DevOps lifecycle of cloud applications. Softw: Pract
Exper. 49, 1421–1447 (2019). https://doi.org/10.1002/spe.2741. 45. Tanhua, T., Pouliquen, S., Hausman, J., O’Brien, K.,
Bricher, P., de Bruin, T., Buck, J.J.H., Burger, E.F., Carval, T., Casey,
K.S., Diggs, S., Giorgetti, A., Glaves, H., Harscoat, V., Kinkade, D.,
Muelbert, J.H., Novellino, A., Pfeil, B., Pulsifer, P.L., Van de Putte, A.,
Robinson, E., Schaap, D., Smirnov, A., Smith, N., Snowden, D., Spears, T.,
Stall, S., Tacoma, M., Thijsse, P., Tronstad, S., Vandenberghe, T., Wengren,
M., Wyborn, L., Zhao, Z.: Ocean
FAIR Data Services. Front. Mar. Sci. 6, 440 (2019). https://doi.org/10.3389/fmars.2019.00440. 46. Martin, P., Remy, L., Theodoridou, M., Jeffery, K., Zhao, Z.: Mapping heterogeneous
research infrastructure metadata into a unified catalogue for use in a
generic virtual research environment. Future Generation Computer Systems.
101, 1–13 (2019). https://doi.org/10.1016/j.future.2019.05.076.
[OA] 47. Zhou, H., Ouyang, X., Su, J., Laat, C., Zhao, Z.: Enforcing trustworthy cloud
SLA with witnesses: A game theory–based model using smart contracts.
Concurrency Computation: Practice Experience (2019). https://doi.org/10.1002/cpe.5511. 48. Taal, A., Wang, J., de Laat, C., Zhao, Z.: Profiling the scheduling
decisions for handling critical paths in deadline-constrained cloud
workflows. Future Generation Computer Systems. 100, 237–249 (2019). https://doi.org/10.1016/j.future.2019.05.002. 49. Štefanič, P., Cigale, M., Jones, A.C., Knight, L.,
Taylor, I., Istrate, C., Suciu, G., Ulisses, A., Stankovski, V., Taherizadeh,
S., Salado, G.F., Koulouzis, S., Martin, P., Zhao, Z.: SWITCH workbench: A novel approach for the development
and deployment of time-critical microservice-based cloud-native applications.
Future Generation Computer Systems. 99, 197–212 (2019). https://doi.org/10.1016/j.future.2019.04.008. 50. Liao, X., Zhao,
Z.: Unsupervised Approaches for Textual Semantic Annotation, A Survey.
ACM Comput. Surv. 52, 1–45 (2019). https://doi.org/10.1145/3324473. 51. Liao, X., Bottelier, J., Zhao, Z.: A Column Styled Composable Schema Matcher for Semantic
Data-Types. Data Science Journal. 18-25 (2019). https://doi.org/10.5334/dsj-2019-025. 52. Koulouzis, S., Martin, P., Zhou, H., Hu, Y., Wang,
J., Carval, T., Grenier, B., Heikkinen, J., Laat, C., Zhao, Z.: Time-critical data management in clouds: Challenges and
a Dynamic Real-Time Infrastructure Planner (DRIP) solution. Concurrency
Computat Pract Exper. e5269 (2019). https://doi.org/10.1002/cpe.5269. 53. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring
self-adaptive applications within edge computing frameworks: A
state-of-the-art review. Journal of Systems and Software. 136, 19–38 (2018). https://doi.org/10.1016/j.jss.2017.10.033. 54. Li, J., Yang, Y., Wang, X., Zhao, Z., Li, T.: A novel parallel distance metric-based approach
for diversified ranking on large graphs. Future Generation Computer Systems.
88, 79–91 (2018). https://doi.org/10.1016/j.future.2018.05.031. 55. Jiang, W., Zhai, Y., Zhuang, Z., Martin, P., Zhao, Z., Liu, J.-B.: Vertex
Labelling and Routing for Farey-Type Symmetrically-Structured Graphs.
Symmetry. 10, 407 (2018). https://doi.org/10.3390/sym10090407. 56. Jiang, W., Zhai, Y., Zhuang, Z., Martin, P., Zhao, Z., Liu, J.-B.: An Efficient
Method of Generating Deterministic Small-World and Scale-Free Graphs for
Simulating Real-World Networks. IEEE Access. 6, 59833–59842 (2018). https://doi.org/10.1109/ACCESS.2018.2875928. 57. Jiang, W., Zhai, Y., Martin, P., Zhao, Z.: Structure Properties of
Generalized Farey graphs based on Dynamical Systems for Networks. Sci Rep. 8,
12194 (2018). https://doi.org/10.1038/s41598-018-30712-2. 58. Wang, J., Taal, A., Martin, P., Hu, Y., Zhou, H.,
Pang, J., de Laat, C., Zhao, Z.:
Planning virtual infrastructures for time critical applications with multiple
deadline constraints. Future Generation Computer Systems. 75, 365–375 (2017).
https://doi.org/10.1016/j.future.2017.02.001,
[Zenodo]. 59. Koulouzis, S., Belloum, A.S.Z., Bubak, M.T., Zhao, Z., Živković, M., de Laat,
C.T.A.M.: SDN-aware federation of distributed data. Future Generation
Computer Systems. 56, 64–76 (2016). https://doi.org/10.1016/j.future.2015.09.032. 60. Zhu, H., van der Veldt, K., Zhao, Z., Grosso, P., Pavlov, D., Soeurt, J., Liao, X., de Laat,
C.: A semantic enhanced Power Budget Calculator for distributed computing
using IEEE 802.3az. Cluster Comput. 18, 61–77 (2015). https://doi.org/10.1007/s10586-014-0395-7. 61. Ghijsen, M., van der Ham, J., Grosso, P., Dumitru,
C., Zhu, H., Zhao, Z., de Laat,
C.: A semantic-web approach for modelling computing infrastructures.
Computers & Electrical Engineering. 39, 2553–2565 (2013). https://doi.org/10.1016/j.compeleceng.2013.08.011. 62. Zhao,
Z., Grosso, P., van der Ham,
J., Koning, R., de Laat, C.: An agent-based network resource planner for
workflow applications. MGS. 7, 187–202 (2011). https://doi.org/10.3233/MGS-2011-0180. 63. Belloum, A., Inda, M.A., Vasunin, D., Korkhov, V., Zhao, Z., Rauwerda, H., Breit,
T.M., Bubak, M., Hertzberger, L.O.: Collaborative e-Science Experiments and
Scientific Workflows. IEEE Internet Comput. 15, 39–47 (2011). https://doi.org/10.1109/MIC.2011.87. 64. Zhao,
Z., van Albada, D., Sloot, P.:
Agent-Based Flow Control for HLA Components. SIMULATION. 81, 487–501 (2005). https://doi.org/10.1177/0037549705058060. 65. Kommers, P. and Zhao, Z.: Conceptual
Support with Virtual Reality in Web-based Learning, International Journal
of Continuing Engineering Education and Life-Long Learning, vol. 8, nr 1
1998. ISSN 0957-4344 (1998). https://www.inderscienceonline.com/doi/abs/10.1504/IJCEELL.1998.030134. Editorial (special issues
and proceedings) 66. Cheng, L., Chen, X., Zhao, Z.:
Preface of special issue on Artificial Intelligence for time-critical
computing systems. Future Generation Computer Systems. 159, 102–104 (2024). https://doi.org/10.1016/j.future.2024.05.011. 67. Wittenburg, P., Hardisty, A., Mozzafari,
A., Peer, L., Skvortsov, N., Spinuso, A., Zhao, Z.: Editors’ Note:
Special Issue on Canonical Workflow Frameworks for Research. Data
Intelligence. 4, 149–154 (2022). https://doi.org/10.1162/dint_e_00122. 68. Rong, C., Zhao, Z.: Welcome to the
new Journal of Cloud Computing by Springer. J Cloud Comp. 10, 49,
s13677-021-00263–5 (2021). https://doi.org/10.1186/s13677-021-00263-5.
69. Zhao, Z., Taylor, I., Prodan, R.: Editorial for
FGCS Special issue on “Time-critical Applications on Software-defined
Infrastructures.” Future Generation Computer Systems. 112, 1170–1171 (2020). https://doi.org/10.1016/j.future.2020.07.056.[OA] [Content]
70. Zhao, Z., Altmeyer, S., Keith J., Atkinson,
M. and Ulisses A.: Nearly
real time data processing and time critical cloud applications. Proceedings
of the 2nd International workshop
on Interoperable infrastructures for interdisciplinary big data sciences
(IT4RIs 16), in the context of IEEE Real-time System Symposium (RTSS), Porto,
Portugal, November 29-December 2, (2016). [doi:10.5281/zenodo.204685] 71. Lu, S., Deelman, E. & Zhao,
Z.: Scientific workflows
special issue. International journal of business process integration
and management (pp. 1-2). Inder science Enterprises Ltd. (2010). [Full text] 72. Zhao, Z., Belloum, A.,
Bubak, M.: Special section on workflow systems and applications in e-Science.
Future Generation Computer Systems. 25, 525–527 (2009). https://doi.org/10.1016/j.future.2008.10.011. 73. Belloum, A., Deelman, E. & Zhao,
Z.: Scientific workflows.
Scientific Programming, 14(3-4), 171-171 (2006). [Full text] Book (Eds) 74. Zhao, Z., Hellström, M. eds: Towards
Interoperable Research Infrastructures for Environmental and Earth Sciences:
A Reference Model Guided Approach for Common Challenges. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4.
[ENVRI archive][Book interview] Book chapters 75. Jeffery, K., Pursula, A., Zhao, Z.: ICT Infrastructures for Environmental and Earth
Sciences. In: Zhao, Z. and
Hellström, M. (eds.) Towards Interoperable Research Infrastructures for
Environmental and Earth Sciences. pp. 17–29. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_2. 76. Magagna, B., Martin, P., de la Hidalga, A.N.,
Atkinson, M., Zhao, Z.: Common
Challenges and Requirements. In: Zhao,
Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 30–57. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_3. 77. de la Hidalga, A.N., Hardisty, A., Martin, P.,
Magagna, B., Zhao, Z.: The ENVRI
Reference Model. In: Zhao, Z. and
Hellström, M. (eds.) Towards Interoperable Research Infrastructures for
Environmental and Earth Sciences. pp. 61–81. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_4. 78. Zhao, Z., Jeffery, K.: Reference
Model Guided Engineering. In: Zhao, Z. and Hellström, M. (eds.) Towards
Interoperable Research Infrastructures for Environmental and Earth Sciences.
pp. 82–99. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_5. 79. Martin, P., Liao, X., Magagna, B., Stocker, M., Zhao, Z.: Semantic and Knowledge
Engineering Using ENVRI RM. In: Zhao,
Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 100–119. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_6. 80. Quimbert, E., Jeffery, K., Martens, C., Martin, P., Zhao, Z.: Data Cataloguing. In: Zhao, Z. and Hellström, M. (eds.)
Towards Interoperable Research Infrastructures for Environmental and Earth
Sciences. pp. 140–161. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_8. 81. Koulouzis, S., Martin, P., Zhao, Z.: Virtual Infrastructure Optimisation. In: Zhao, Z. and Hellström, M. (eds.)
Towards Interoperable Research Infrastructures for Environmental and Earth
Sciences. pp. 192–207. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_11. 82. Magagna, B., Goldfarb, D., Martin, P., Atkinson, M.,
Koulouzis, S., Zhao, Z.: Data
Provenance. In: Zhao, Z. and
Hellström, M. (eds.) Towards Interoperable Research Infrastructures for
Environmental and Earth Sciences. pp. 208–225. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_12. 83. Martin, P., Magagna, B., Liao, X., Zhao, Z.: Semantic Linking of
Research Infrastructure Metadata. In: Zhao,
Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 226–246. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_13. 84. Koulouzis, S., Carval, T., Heikkinen, J., Pursula,
A., Zhao, Z.: Case Study: Data Subscriptions
Using Elastic Cloud Services. In: Zhao,
Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 293–306. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_16. 85. Zhao,
Z., Jeffery, K., Stocker, M., Atkinson,
M., Petzold, A.: Towards Operational Research Infrastructures with FAIR Data
and Services. In: Zhao, Z. and
Hellström, M. (eds.) Towards Interoperable Research Infrastructures for
Environmental and Earth Sciences. pp. 360–372. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_20. 86. Martin, P., Chen, Y. Hardisty, A., Jeffery, K., and Zhao,
Z.: Computational
Challenges in Global Environmental Research Infrastructures. in
the book Terrestrial Ecosystem Research Infrastructures: Challenges, New
Developments and Perspectives (2017). [ISBN 9781498751315] [OA]. 87. Zhao, Z., Grosso, P., Ham, J. van der, Koning, R.
& de Laat, C.: Quality guaranteed media delivery over
advanced network. Chapter in book Next Generation Content Delivery
Infrastructure: Emerging Paradigms and Technologies, IGI, (2012). ISBN
978-1-4666-1794-0 [doi: 10.4018/978-1-4666-1794-0.ch006]. Conferences 88. Cheng, L., He, H., Gu, Y., Liu, Q., Zhao, Z.,
Fang, F.: MARS: Multi-Agent Deep Reinforcement Learning for Real-Time
Workflow Scheduling in Hybrid Clouds with Privacy Protection. In: 2024 IEEE
30th International Conference on Parallel and Distributed Systems (ICPADS).
pp. 657–666. IEEE, Belgrade,
Serbia (2024). https://doi.org/10.1109/ICPADS63350.2024.00091.
(Best paper) 89. Hou, S., Wang, Y., Zhao, Z.: CrowdAL: Towards
a Blockchain-empowered Active Learning System in Crowd Data Labeling. In:
2024 IEEE 20th International Conference on e-Science (e-Science). pp. 1–2.
IEEE, Osaka, Japan (2024). https://doi.org/10.1109/e-Science62913.2024.10678683. 90. Krishnasamy, A., Wang, Y., Zhao, Z.: A
Collaborative Framework for Facilitating Federated Learning among Jupyter
Users. In: 2024 IEEE 20th International Conference on e-Science (e-Science).
pp. 1–2. IEEE, Osaka, Japan (2024). https://doi.org/10.1109/e-Science62913.2024.10678679.
91. Wang, Y., Kanwal, N., Engan, K., Rong, C., Grosso,
P., Zhao, Z.: PriCE: Privacy-Preserving and Cost-Effective Scheduling
for Parallelizing the Large Medical Image Processing Workflow over Hybrid
Clouds. In: Carretero, J., Shende, S., Garcia-Blas, J., Brandic, I., Olcoz,
K., and Schreiber, M. (eds.) Euro-Par
2024: Parallel Processing. pp. 210–224. Springer Nature Switzerland, Cham
(2024). https://doi.org/10.1007/978-3-031-69577-3_15[OA]. 92. Pan, R., Shi, Z., Belloum, A., Zhao, Z.:
Operating ZKPs on Blockchain: A Performance Analysis Based on Hyperledger
Fabric. In: 2024 IEEE International Conference on Decentralized Applications
and Infrastructures (DAPPS). pp. 69–78. IEEE, Shanghai, China (2024). https://doi.org/10.1109/DAPPS61106.2024.00018
[OA](Best paper). 93. Zhu, P., Li, N., Zhao, Z.:
Retrieval-augmented Query Reformulation for Heterogeneous Research Asset
Retrieval in Virtual Research Environment. In: Companion Proceedings of the
ACM on Web Conference 2024. pp. 907–910. ACM, Singapore Singapore (2024). https://doi.org/10.1145/3589335.3651553. 94. Van De Kamp, R., Bakker, K., Zhao, Z.: Paving
the Path Towards Platform Engineering Using a Comprehensive Reference Model.
In: Sales, T.P., De Kinderen, S., Proper, H.A., Pufahl, L., Karastoyanova,
D., and Van Sinderen, M. (eds.) Enterprise Design, Operations, and Computing.
EDOC 2023 Workshops. pp. 177–193. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-54712-6_11
[OA] 95. Ashraf, A., Belleman, R.G., Zhao, Z.:
Visualization Techniques and Tools for Developing Digital Twins of
Ecosystems: State-of-the-Art and Selection. In: 2023 IEEE Smart World
Congress (SWC). pp. 1–8. IEEE, Portsmouth, United Kingdom (2023). https://doi.org/10.1109/SWC57546.2023.10448753
[OA] 96. Li, N., Qi, Y., Xin, R., Zhao, Z.: Ocean Data
Quality Assessment through Outlier Detection-enhanced Active Learning. In:
2023 IEEE International Conference on Big Data (BigData). pp. 102–107. IEEE,
Sorrento, Italy (2023). https://doi.org/10.1109/BigData59044.2023.10386969
[OA]. 97. Li, N., Zhang, Y., Zhao, Z.: A Dense
Retrieval System and Evaluation Dataset for Scientific Computational
Notebooks. In: 2023 IEEE 19th International Conference on e-Science
(e-Science). pp. 1–10. IEEE, Limassol, Cyprus (2023). https://doi.org/10.1109/e-Science58273.2023.10254859[OA]. 98. Christou, V., Wang, Y., Zhao, Z.: Towards a
Knowledge Graph Enhanced Automation and Collaboration Framework for Digital
Twins. In: 2023 IEEE 19th International Conference on e-Science (e-Science).
pp. 1–2. IEEE, Limassol, Cyprus (2023). https://doi.org/10.1109/e-Science58273.2023.10254845
[OA]. 99. Kontomaris, C., Wang, Y., Zhao, Z.:
CWL-FLOps: A Novel Method for Federated Learning Operations at Scale. In:
2023 IEEE 19th International Conference on e-Science (e-Science). pp. 1–2.
IEEE, Limassol, Cyprus (2023). https://doi.org/10.1109/e-Science58273.2023.10254788[OA]. 100.
Marra,
M.L., Henkemans, D.B., Titocci, J., Koulouzis, S., Rosati, I., Zhao, Z.:
Integrating R in a Distributed Scientific Workflow via a Jupyter-Based
Environment. In: 2023 IEEE 19th International Conference on e-Science
(e-Science). pp. 1–2. IEEE, Limassol, Cyprus (2023). https://doi.org/10.1109/e-Science58273.2023.10254945[OA]. 101.
Blanco,
A.F., Shi, Z., Roy, D., Zhao, Z.: Improving the Resiliency of Decentralized
Crowdsourced Blockchain Oracles. In: Mikyška, J., De Mulatier, C., Paszynski,
M., Krzhizhanovskaya, V.V., Dongarra, J.J., and Sloot, P.M.A. (eds.)
Computational Science – ICCS 2023. pp. 3–17. Springer Nature Switzerland,
Cham (2023). https://doi.org/10.1007/978-3-031-35995-8_1
102.
Wang,
Y., Kanwal, N., Engan, K., Rong, C., Zhao, Z.: Towards a
Privacy-Preserving Distributed Cloud Service for Preprocessing Very Large
Medical Images. In: 2023 IEEE International Conference on Digital Health
(ICDH). pp. 325–327. IEEE, Chicago, IL, USA (2023). https://doi.org/10.1109/ICDH60066.2023.00055
[OA] 103.
Wang,
Y., Janse, N., Bianchi, R., Koulouzis, S., Zhao, Z.: Towards a
Service-based Adaptable Data Layer for Cloud Workflows. In: 2023 IEEE 47th
Annual Computers, Software, and Applications Conference (COMPSAC). pp.
904–911. IEEE, Torino, Italy (2023). https://doi.org/10.1109/COMPSAC57700.2023.00121
[OA] 104.
Li,
N., Zhang, Y., Zhao, Z.: CNSVRE: A Query Reformulated Search System with
Explainable Summarization for Virtual Research Environment. In: Companion
Proceedings of the ACM Web Conference 2023. pp. 254–257. ACM, Austin TX USA
(2023). https://doi.org/10.1145/3543873.3587360
[OA]. 105.
Song,
Y., Xin, R., Zhang, R., Chen, J., Zhao, Z.: A Robust and Accurate Multivariate
Time Series Anomaly Detection in Fluctuating Cloud-Edge Computing Systems.
In: 2022 IEEE 24th Int Conf on High-Performance Computing &
Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on
Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data
Systems & Application (HPCC/DSS/SmartCity/DependSys). pp. 357–365. IEEE,
Hainan, China (2022). https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00077
106.
Lima,
I.R., Marinho, C., Filipe, V., Ulisses, A., Saurabh, N., Chakravorty, A., Zhao,
Z., Hristov, A., Prodan, R.: MOGPlay: A Decentralized Crowd Journalism
Application for Democratic News Production. In: 2022 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM). pp.
462–469. IEEE, Istanbul, Turkey (2022). https://doi.org/10.1109/ASONAM55673.2022.10068697. 107.
Xin,
R., Stallinga, S., Liu, H., Chen, P., Zhao, Z.: Provenance-enhanced
Root Cause Analysis for Jupyter Notebooks. In: 2022 IEEE/ACM 15th
International Conference on Utility and Cloud Computing (UCC). pp. 327–333.
IEEE, Vancouver, WA, USA (2022). https://doi.org/10.1109/UCC56403.2022.00058[OA]. 108.
Geng,
J., Chen, Z., Wang, Y., Woisetschlaeger, H., Schimmler, S., Mayer, R., Zhao,
Z., Rong, C.: A Survey on Dataset Distillation: Approaches, Applications
and Future Directions. In: Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence. pp. 6610–6618. International
Joint Conferences on Artificial Intelligence Organization, Macau, SAR China
(2023). https://doi.org/10.24963/ijcai.2023/741
[OA]. 109.
Chen,
S., Huang, G., Lin, S., Jiang, W., Zhao, Z.: Overlapping Community
Discovery Algorithm Based on Three-Level Neighbor Node Influence. In: Xu, Y.,
Yan, H., Teng, H., Cai, J., and Li, J. (eds.) Machine Learning for Cyber
Security. pp. 335–344. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-20099-1_28.
110.
Li,
N., Farshidi, S., Bianchi, R., Koulouzis, S., Zhao, Z.: Context-Aware
Notebook Search in a Jupyter-Based Virtual Research Environment. In: 2022
IEEE 18th International Conference on e-Science (e-Science). pp. 393–394.
IEEE, Salt Lake City, UT, USA (2022). https://doi.org/10.1109/eScience55777.2022.00054[OA]. 111.
Li,
M., Su, J., Liu, H., Zhao, Z., Ouyang, X., Zhou, H.: The Extreme
Counts: Modeling the Performance Uncertainty of Cloud Resources with Extreme
Value Theory. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández,
P., and Ruiz-Cortés, A. (eds.) Service-Oriented Computing. pp. 498–512.
Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-20984-0_35. 112.
Launet,
L., Amor, R. del, Colomer, A., Mosquera-Zamudio, A., Moscardó, A.,
Monteagudo, C., Zhao, Z., Naranjo, V.: Federating Unlabeled Samples: A
Semi-supervised Collaborative Framework for Whole Slide Image Analysis. In:
Yin, H., Camacho, D., and Tino, P. (eds.) Intelligent Data Engineering and
Automated Learning – IDEAL 2022. pp. 64–72. Springer International
Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-21753-1_7
113.
Ivankovic,
V., Shi, Z., Zhao, Z.: A Customizable dApp Framework for User
Interactions in Decentralized Service Marketplaces. In: 2022 IEEE
International Conference on Smart Internet of Things (SmartIoT). pp. 224–231.
IEEE, Suzhou, China (2022). https://doi.org/10.1109/SmartIoT55134.2022.00043.[OA][Best paper]. 114.
Liu,
H., Xin, R., Chen, P., Zhao, Z.: Multi-Objective Robust Workflow
Offloading in Edge-to-Cloud Continuum. In: 2022 IEEE 15th International
Conference on Cloud Computing (CLOUD). pp. 469–478. IEEE, Barcelona, Spain
(2022). https://doi.org/10.1109/CLOUD55607.2022.00070.[OA] 115.
Boyko,
A., Farshidi, S., Zhao, Z.: An Adaptable Framework for Entity Matching
Model Selection in Business Enterprises. In: 2022 IEEE 24th Conference on
Business Informatics (CBI). pp. 90–99. IEEE, Amsterdam, Netherlands (2022). https://doi.org/10.1109/CBI54897.2022.00017 [OA] 116.
Farshidi,
S., Zhao, Z.: An Adaptable Indexing Pipeline for Enriching Meta
Information of Datasets from Heterogeneous Repositories. In: Gama, J., Li,
T., Yu, Y., Chen, E., Zheng, Y., and Teng, F. (eds.) Advances in Knowledge
Discovery and Data Mining. pp. 472–484. Springer International Publishing,
Cham (2022). https://doi.org/10.1007/978-3-031-05936-0_37
[OA]. 117.
Hoogenkamp,
B., Farshidi, S., Xin, R., Shi, Z., Chen, P., Zhao, Z.: A
Decentralized Service Control Framework for Decentralized Applications in
Cloud Environments. In: Montesi, F., Papadopoulos, G.A., and Zimmermann, W.
(eds.) Service-Oriented and Cloud Computing. pp. 65–73. Springer
International Publishing, Cham (2022). [https://doi.org/10.1007/978-3-031-04718-3_4][OA] 118.
Bergers,
J., Shi, Z., Korsmit, K., Zhao, Z.: DWH-DIM: A Blockchain Based
Decentralized Integrity Verification Model for Data Warehouses. In: 2021 IEEE
International Conference on Blockchain (Blockchain). pp. 221–228. IEEE,
Melbourne, Australia (2021). https://doi.org/10.1109/Blockchain53845.2021.00037
[OA] 119.
Poon,
L., Farshidi, S., Li, N., Zhao, Z.: Unsupervised Anomaly Detection in
Data Quality Control. In: 2021 IEEE International Conference on Big Data (Big
Data). pp. 2327–2336. IEEE, Orlando, FL, USA (2021). https://doi.org/10.1109/BigData52589.2021.9671672
[OA] 120.
Liu
H., Chen P., Zhao, Z.,: Towards A Robust Meta-Reinforcement
Learning-Based Scheduling Framework for Time Critical Tasks in Cloud
Environments, IEEE Cloud (2021), Online, [10.1109/CLOUD53861.2021.00082]
[OA](Best student paper) 121.
Shi
Ze., Farshidi S., Zhou H., Zhao Z., An Auction and Witness Enhanced
Trustworthy SLA Model for
Decentralized Cloud Marketplaces, The 2021 ACM International
Conference on Information Technology for Social Good (GoodIT 2021), Rome
Italy [https://doi.org/10.1145/3462203.3475876]
[OA] 122.
Xin
R., Mohazzab J., Shi Z., and Zhao Z.: CBProf: Customisable
Blockchain-as-a-service Performance Profiler in Cloud Environments,
International Conf. on Blockchain (2021), Online [https://doi.org/10.1007/978-3-030-96527-3_9][OA] 123.
Koulouzis,
S., Bianchi, R., der Linde, R. van, Wang, Y., Zhao, Z.: SPIRIT: A
Microservice-Based Framework for Interactive Cloud Infrastructure Planning.
In: Chaves, R., B. Heras, D., Ilic, A., Unat, D., Badia, R.M., Bracciali, A.,
Diehl, P., Dubey, A., Sangyoon, O., L. Scott, S., and Ricci, L. (eds.)
Euro-Par 2021: Parallel Processing Workshops. pp. 405–416. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-06156-1_32
[OA]. 124.
Zhao, Z., Rong, C., Jaatun, M.G.: A
Trustworthy Blockchain-based Decentralised Resource Management System in the
Cloud. In: 2020 IEEE 26th International Conference on Parallel and
Distributed Systems (ICPADS). pp. 617–624. IEEE, Hong Kong (2020). https://doi.org/10.1109/ICPADS51040.2020.00086
[OA]. 125.
Wang,
Y., Zhao, Z.: Decentralized
workflow management on software defined infrastructure, Workshop on The 1st Workshop
On Data-Centric Workflows On Heterogeneous Infrastructures: Challenges And
Directions (DAWHI), in the context of IEEE Service Congress, (2020), [https://doi.org/10.1109/SERVICES48979.2020.00059][OA]. 126.
de
Jong, K., Fahrenfort, C., Younis, A., Zhao,
Z.: Sharing digital object across data infrastructures using Named Data
Networking (NDN). 2nd workshop on Network Aware Big Data Computing
(NEAC), In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID). pp. 873–880. IEEE, Melbourne, Australia (2020). https://doi.org/10.1109/CCGrid49817.2020.00013.
[OA]. 127.
Zhou,
H., Ouyang, X., Zhao, Z.: ALLSTAR:
A Blockchain Based Decentralized Ecosystem for Cloud and Edge Computing. In:
2020 IEEE International Conference on Joint Cloud Computing. pp. 55–62. IEEE,
Oxford, United Kingdom (2020). https://doi.org/10.1109/JCC49151.2020.00018
[OA]. 128.
Shi,
Z., Zhou, H., Surbiryala, J., Hu, Y., de Laat, C., Zhao, Z.: An Automated Customization and Performance Profiling
Framework for Permissioned Blockchains in a Virtualized Environment. In: 2019
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). pp. 404–410. IEEE, Sydney, Australia (2019). https://doi.org/10.1109/CloudCom.2019.00069,
[OA]. 129.
Petzold,
A., Asmi, A., Vermeulen, A., Pappalardo, G., Bailo, D., Schaap, D., Glaves,
H.M., Bundke, U., Zhao, Z.:
ENVRI-FAIR - Interoperable Environmental FAIR Data and Services for Society,
Innovation and Research. In: 2019 15th International Conference on eScience
(eScience). pp. 277–280. IEEE, San Diego, CA, USA (2019). https://doi.org/10.1109/eScience.2019.00038,
[OA]. 130.
Fahrenfort,
C., Zhao, Z.: Effective Digital
Object Access and Sharing Over a Networked Environment using DOIP and NDN.
In: 2019 15th International Conference on eScience (eScience). pp. 632–633.
IEEE, San Diego, CA, USA (2019). https://doi.org/10.1109/eScience.2019.00092,
[OA]. 131.
Demchenko,
Y., Zhao, Z., Surbiryala, J.,
Koulouzis, S., Shi, Z., Liao, X., Gordiyenko, J.: Teaching DevOps and Cloud
Based Software Engineering in University Curricula. In: 2019 15th
International Conference on eScience (eScience). pp. 548–552. IEEE, San
Diego, CA, USA (2019). https://doi.org/10.1109/eScience.2019.00075,
[OA]. 132.
Ahanach,
E. el K., Koulouzis, S., Zhao, Z.:
Contextual Linking between Workflow Provenance and System Performance Logs.
In: 2019 15th International Conference on eScience (eScience). pp. 634–635.
IEEE, San Diego, CA, USA (2019). https://doi.org/10.1109/eScience.2019.00093,
[OA]. 133.
Prodan,
R., Saurabh, N., Zhao, Z., Orton-Johnson, K., Chakravorty,
A., Karadimce, A., and Ulisses, A.: ARTICONF: Towards a Smart Social Media
Ecosystem in a Blockchain Federated Environment, in the 7th Workshop on Large
Scale Distributed Virtual Environments, in the context of Euro-Par conference
2019, Gottingen, Germany (2019) https://doi.org/10.1007/978-3-030-48340-1_32
[OA]. 134.
Shi,
Z., Zhou, H., Hu, Y., Koulouzis, S., Rubia, C., and Zhao, Z.: Co-located and Orchestrated Network Fabric (CONF): An
Automated Cloud Virtual Infrastructure for Social Network Applications. in
the 7th Workshop on Large Scale Distributed Virtual Environments, in the
context of Euro-Par conference 2019, Gottingen, Germany (2019) https://doi.org/10.1007/978-3-030-48340-1_36,
[OA]. 135.
Zhou,
H., Shi, Z., Hu, Y., Donkers, P., Afanasyev, A., Koulouzis, S., Taal, A.,
Ulisses, A., Zhao, Z.: Large
Distributed Virtual Infrastructure Partitioning and Provisioning Across
Providers. In: 2019 IEEE International Conference on Smart Internet of Things
(SmartIoT). pp. 56–63. IEEE, Tianjin, China (2019). https://doi.org/10.1109/SmartIoT.2019.00018,
[OA] (Best student paper candidate). 136.
Zhao, Z., Liao, X., Martin, P., Maduro, J., Thijsse, P.,
Schaap, D., Stocker, M., Goldfarb, D., Magagna, B.: Knowledge-as-a-Service: A
Community Knowledge Base for Research Infrastructures in Environmental and
Earth Sciences. In: 2019 IEEE World Congress on Services (SERVICES). pp.
127–132. IEEE, Milan, Italy (2019). https://doi.org/10.1109/SERVICES.2019.00041,
[OA]. 137.
Hu,
Y., de Laat, C., Zhao, Z.:
Learning Workflow Scheduling on Multi-Resource Clusters. In: 2019 IEEE
International Conference on Networking, Architecture and Storage (NAS). pp.
1–8. IEEE, EnShi, China (2019). https://doi.org/10.1109/NAS.2019.8834720,
[OA]. 138.
Ahanach,
E. el K., Koulouzis, S., Zhao, Z.:
Linking provenance with system logs: a context aware information integration
and exploration framework for analyzing workflow execution. 10th
International Workshop on Science Gateways (IWSG 2019), pp. 13-15 June 2019
(2019). [OA] 139.
Zhou,
H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao, Z.: A Blockchain based Witness Model for Trustworthy Cloud
Service Level Agreement Enforcement. In: IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications. pp. 1567–1575. IEEE, Paris, France (2019). https://doi.org/10.1109/INFOCOM.2019.8737580,
[OA] Best presentation in the session. 140.
Shi,
Z., Zhou, H., Hu, Y., Jayachander, S., de Laat, C., Zhao, Z.: Operating Permissioned Blockchain in Clouds: A
Performance Study of Hyperledger Sawtooth. In: 2019 18th International
Symposium on Parallel and Distributed Computing (ISPDC). pp. 50–57. IEEE,
Amsterdam, Netherlands (2019). https://doi.org/10.1109/ISPDC.2019.00010,
[OA]. 141.
Hu,
Y., De Laat, C., Zhao, Z.:
Multi-objective Container Deployment on Heterogeneous Clusters. In: 2019 19th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). pp. 592–599. IEEE, Larnaca, Cyprus (2019). https://doi.org/10.1109/CCGRID.2019.00076,
[OA] Best paper award. 142.
Zhou,
H., Koulouzis, S., Hu, Y., Wang, J., de Laat, C., Ulisses, A., Zhao, Z.: Migrating Live Streaming
Applications onto Clouds: Challenges and a CloudStorm Solution. In: 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion
(UCC Companion). pp. 321–326. IEEE, Zurich (2018). https://doi.org/10.1109/UCC-Companion.2018.00075,
[OA]. 143.
Zhou,
H., de Laat, C., Zhao, Z.:
Trustworthy Cloud Service Level Agreement Enforcement with Blockchain Based
Smart Contract. In: 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). pp. 255–260. IEEE, Nicosia (2018). https://doi.org/10.1109/CloudCom2018.2018.00057,
[OA]. 144.
Hu,
Y., Zhou, H., de Laat, C., Zhao, Z.: ECSched:
Efficient Container Scheduling on Heterogeneous Clusters. In: Aldinucci, M.,
Padovani, L., and Torquati, M. (eds.) Euro-Par 2018: Parallel Processing. pp.
365–377. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1_26
[OA]. 145.
Qin,
Y., Chi, M., Liu, X., Zhang, Y., Zeng, Y., Zhao, Z.: Classification of High Resolution Urban Remote Sensing
Images Using Deep Networks by Integration of Social Media Photos. In: IGARSS
2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. pp.
7243–7246. IEEE, Valencia (2018). https://doi.org/10.1109/IGARSS.2018.8518538. 146.
Zhou,
H., Hu, Y., Su, J., Chi, M., de Laat, C., Zhao, Z.: Empowering Dynamic Task-Based Applications with Agile
Virtual Infrastructure Programmability. In: 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). pp. 484–491. IEEE, San Francisco, CA,
USA (2018). https://doi.org/10.1109/CLOUD.2018.00068. 147.
Zhou,
H., Hu, Y., Su, J., de Laat, C., Zhao,
Z.: CloudsStorm: An Application-Driven Framework to Enhance the
Programmability and Controllability of Cloud Virtual Infrastructures. In:
Luo, M. and Zhang, L.-J. (eds.) Cloud Computing – CLOUD 2018. pp. 265–280.
Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-94295-7_18. 148.
Martin,
P., Remy, L., Theodoridou, M., Jeffery, K., Zhao, Z.: Mapping metadata
from different research infrastructures into a unified framework for use in a
virtual research environment. 10th International Workshop on Science Gateways
(IWSG 2018), 13-15 June 2018, (2018). [PDF] 149.
Zhou,
H., Taal, A., Koulouzis, S., Wang, J., Hu, Y., Suciu, G., Poenaru, V., de
Laat, C., Zhao, Z.: Dynamic
Real-Time Infrastructure Planning and Deployment for Disaster Early Warning
Systems. In: Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H.,
Dongarra, J., and Sloot, P.M.A. (eds.) Computational Science – ICCS 2018. pp.
644–654. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-93701-4_51. 150.
Koulouzis,
S., Mousa, R., Karakannas, A., de Laat, C., Zhao, Z.: Information Centric Networking for Sharing and
Accessing Digital Objects with Persistent Identifiers on Data
Infrastructures. In: 2018 18th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). pp. 661–668. IEEE, Washington, DC, USA
(2018). https://doi.org/10.1109/CCGRID.2018.00098. 151.
Zhou,
H., de Laat, C., Zhao, Z.:
Cloudsstorm: An Application-Driven Devops Framework For Managing Networked
Infrastructures On Federated Clouds. (2018). https://doi.org/10.5281/ZENODO.1162914. 152.
Zhao, Z., Martin, P., Jones, A., Taylor, I., Stankovski, V.,
Salado, G.F., Suciu, G., Ulisses, A., de Laat, C.: Developing, Provisioning
and Controlling Time Critical Applications in Cloud. In: Mann, Z.Á. and
Stolz, V. (eds.) Advances in Service-Oriented and Cloud Computing. pp.
169–174. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-79090-9_14. 153.
Wang,
J., Zhou, H., Hu, Y., De Laat, C., Zhao, Z.: Deadline-Aware Coflow
Scheduling in a DAG. In: 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). pp. 341–346. IEEE, Hong Kong
(2017). https://doi.org/10.1109/CloudCom.2017.55. 154.
Wang,
J., de Laat, C., Zhao, Z.: QoS-aware virtual SDN network planning. In:
2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
pp. 644–647. IEEE, Lisbon, Portugal (2017). https://doi.org/10.23919/INM.2017.7987350. 155.
Taherizadeh,
S., Taylor, I., Jones, A., Zhao, Z., Stankovski, V.: A Network Edge
Monitoring Approach for Real-Time Data Streaming Applications. In: Bañares,
J.Á., Tserpes, K., and Altmann, J. (eds.) Economics of Grids, Clouds,
Systems, and Services. pp. 293–303. Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-61920-0_21. 156.
Koulouzis,
S., Martin, P., Carval, T., Grenier, B., Judeau, G., Heikkinen, J., Wang, J.,
Zhou, H., Hu, Y., De Laat, C., Zhao, Z.: Seamless Infrastructure
Customisation and Performance Optimisation for Time-critical Services in Data
Infrastructures. (2017). https://doi.org/10.5281/ZENODO.1570919. 157.
Hu,
Y., Wang, J., Zhou, H., Martin, P., Taal, A., de Laat, C., Zhao, Z.: Deadline-Aware
Deployment for Time Critical Applications in Clouds. In: Rivera, F.F., Pena,
T.F., and Cabaleiro, J.C. (eds.) Euro-Par 2017: Parallel Processing. pp.
345–357. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-64203-1_25. 158.
Elzinga,
O., Koulouzis, S., Taal, A., Wang, J., Hu, Y., Zhou, H., Martin, P., de Laat,
C., Zhao, Z.: Automatic Collector for Dynamic Cloud Performance
Information. In: 2017 International Conference on Networking, Architecture,
and Storage (NAS). pp. 1–6. IEEE, Shenzhen, China (2017). https://doi.org/10.1109/NAS.2017.8026845. 159.
Zhou,
H., Wang, J., Hu, Y., Su, J., Martin, P., De Laat, C., Zhao, Z.: Fast
Resource Co-provisioning for Time Critical Applications Based on Networked
Infrastructures. In: 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD). pp. 802–805. IEEE, San Francisco, CA, USA (2016). https://doi.org/10.1109/CLOUD.2016.0111. 160.
Zhou,
H., Martin, P., Su, J., De Laat, C., Zhao, Z.: A Flexible Inter-Locale
Virtual Cloud For Nearly Real-Time Big Data Applications. (2016). https://doi.org/10.5281/ZENODO.204774. 161.
Zhou,
H., Hu, Y., Wang, J., Martin, P., De Laat, C., Zhao, Z.: Fast and
Dynamic Resource Provisioning for Quality Critical Cloud Applications. In:
2016 IEEE 19th International Symposium on Real-Time Distributed Computing
(ISORC). pp. 92–99. IEEE, York, United Kingdom (2016). https://doi.org/10.1109/ISORC.2016.22. 162.
Zhao,
Z., Martin, P., De Laat, C.,
Jeffery, K., Jones, A., Taylor, I., Hardisty, A., Atkinson, M., Zuiderwijk,
A., Yin, Y., Chen, Y.: Time Critical Requirements And Technical
Considerations For Advanced Support Environments For Data-Intensive Research.
(2016). https://doi.org/10.5281/ZENODO.204756. 163.
Taherizadeh,
S., Jones, A.C., Taylor, I., Zhao, Z., Martin, P., Stankovski, V.: Runtime
Network-Level Monitoring Framework. In The Adaptation Of Distributed
Time-Critical Cloud Applications. Zenodo (2016). https://doi.org/10.5281/ZENODO.53869. 164.
Petcu,
D., Fazio, M., Prodan, R., Zhao, Z.,
Rak, M.: On the Next Generations of Infrastructure-as-a-Services: In:
Proceedings of the 6th International Conference on Cloud Computing and
Services Science. pp. 320–326. SCITEPRESS - Science and and Technology
Publications, Rome, Italy (2016). https://doi.org/10.5220/0005912503200326. 165.
Martin,
P., Taal, A., Quevedo, F., Rogers, D., Evans, K., Jones, A., Stankovski, V.,
Taherizadeh, S., Trnkoczy, J., Suciu, G., Zhao, Z.: Information Modelling and Semantic Linking for a
Software Workbench for Interactive, Time Critical and Self-Adaptive Cloud
Applications. In: 2016 30th International Conference on Advanced Information
Networking and Applications Workshops (WAINA). pp. 127–132. IEEE,
Crans-Montana, Switzerland (2016). https://doi.org/10.1109/WAINA.2016.38. 166.
Casale,
G., Chesta, C., Deussen, P., Di Nitto, E., Gouvas, P., Koussouris, S.,
Stankovski, V., Symeonidis, A., Vlassiou, V., Zafeiropoulos, A., Zhao, Z.: Current and Future
Challenges of Software Engineering for Services and Applications. Procedia
Computer Science. 97, 34–42 (2016). https://doi.org/10.1016/j.procs.2016.08.278. 167.
Zhao, Z., Taal, A., Jones, A., Taylor, I., Stankovski, V.,
Vega, I.G., Hidalgo, F.J., Suciu, G., Ulisses, A., Ferreira, P., Laat, C. de:
A Software Workbench for Interactive, Time Critical and Highly Self-Adaptive
Cloud Applications (SWITCH). In: 2015 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. pp. 1181–1184. IEEE, Shenzhen, China
(2015). https://doi.org/10.1109/CCGrid.2015.73. 168.
Zhao, Z., Martin, P., Wang, J., Taal, A., Jones, A., Taylor,
I., Stankovski, V., Vega, I.G., Suciu, G., Ulisses, A., de Laat, C.:
Developing and Operating Time Critical Applications in Clouds: The State of
the Art and the SWITCH Approach. Procedia Computer Science. 68, 17–28 (2015).
https://doi.org/10.1016/j.procs.2015.09.220. 169.
Zhao, Z., Martin, P., Grosso, P., Los, W., Laat, C. de,
Jeffrey, K., Hardisty, A., Vermeulen, A., Castelli, D., Legre, Y., Kutsch,
W.: Reference Model Guided System Design and Implementation for Interoperable
Environmental Research Infrastructures. In: 2015 IEEE 11th International
Conference on e-Science. pp. 551–556. IEEE, Munich, Germany (2015). https://doi.org/10.1109/eScience.2015.41. 170.
Mork,
R., Martin, P., Zhao, Z.:
Contemporary challenges for data-intensive scientific workflow management
systems. In: Proceedings of the 10th Workshop on Workflows in Support of
Large-Scale Science - WORKS ’15. pp. 1–11. ACM Press, Austin, Texas (2015). https://doi.org/10.1145/2822332.2822336. 171.
Martin,
P., Grosso, P., Magagna, B., Schentz, H., Chen, Y., Hardisty, A., Los, W.,
Jeffery, K., Laat, C. de, Zhao, Z.:
Open Information Linking for Environmental Research Infrastructures. In: 2015
IEEE 11th International Conference on e-Science. pp. 513–520. IEEE, Munich,
Germany (2015). https://doi.org/10.1109/eScience.2015.66. 172.
Jeferry,
K., Kousiouris, G., Kyriazis, D., Altmann, J., Ciuffoletti, A., Maglogiannis,
I., Nesi, P., Suzic, B., Zhao, Z.:
Challenges Emerging from Future Cloud Application Scenarios. Procedia
Computer Science. 68, 227–237 (2015). https://doi.org/10.1016/j.procs.2015.09.238. 173.
Evans,
K., Trnkoczy, J., Suciu, G., Suciu, V., Martin, P., Wang, J., Zhao, Z., Jones, A., Preece, A.,
Quevedo, F., Rogers, D., Spasić, I., Taylor, I., Stankovski, V., Taherizadeh,
S.: Dynamically reconfigurable workflows for time-critical applications. In:
Proceedings of the 10th Workshop on Workflows in Support of Large-Scale Science
- WORKS ’15. pp. 1–10. ACM Press, Austin, Texas (2015). https://doi.org/10.1145/2822332.2822339. 174.
Zhao, Z., Wibisono, A., Grosso, P., Los, W., De Laat, C.,
Chen, Y., Hardisty, A., Martin, P., Atkinson, M., Schentz, H., Magagna, B.:
Oeilm: A Semantic Linking Framework For Environmental Research
Infrastructures. (2013). https://doi.org/10.5281/ZENODO.205781. 175.
Jiang,
W., Zhao, Z., Wibisono, A.,
Grosso, P., Laat, C. de: Dynamic Workflow Planning on Programmable
Infrastructure. In: 2013 IEEE Eighth International Conference on Networking,
Architecture and Storage. pp. 326–330. IEEE, Xi’an, Shaanxi, China (2013). https://doi.org/10.1109/NAS.2013.53. 176.
Jiang,
W., Zhao, Z., Laat, C. de: An
Autonomous Security Storage Solution for Data-Intensive Cooperative Cloud
Computing. In: 2013 IEEE 9th International Conference on e-Science. pp.
369–372. IEEE, Beijing, China (2013). https://doi.org/10.1109/eScience.2013.31. 177.
Chen,
Y., Martin, P., Schentz, H., Magagna, B., Zhao, Z., Hardisty,
A., Preece, A., Atkinson, M., Huber, R., and Legre. R.: A common reference model for
environmental science research infrastructures. In Proceedings of
EnviroInfo2013, (2013). [Full text] 178.
Chen,
Y., Hardisty, A., Preece, A., Atkinson, M., Martin, P., Zhao,
Z., Schentz, H., Magagna, B. and Legre. R.,
(2013) Analysis of Common Requirements for Environmental Science
Research Infrastructures. In Proceedings of The International
Symposium on Grids and Clouds (ISGC). [Full
text] 179.
Dumitru,
C., Zhao, Z., Grosso, P., de Laat,
C.: HybridFlow: Towards intelligent video delivery and processing over hybrid
infrastructures. In: 2013 International Conference on Collaboration
Technologies and Systems (CTS). pp. 473–478. IEEE, San Diego, CA, USA (2013).
https://doi.org/10.1109/CTS.2013.6567271. 180.
Zhu,
H., van der Veldt, K., Grosso, P., Zhao, Z., Liao, X., and
de Laat, C.: Energy aware Semantic
modelling in large scale infrastructure, International conference on
Green Com, France, (2012) [Fulltext]. 181.
Belloum,
A.S.Z., Cushing, R., Koulouzis, S., Korkhov, V., Vasunin, D., Guevara-Masis,
V., Zhao, Z., Bubak, M.: Support
for Cooperative Experiments in e-Science: From Scientific Workflows to
Knowledge Sharing. In: Roterman-Konieczna, I. (ed.) Identification of Ligand
Binding Site and Protein-Protein Interaction Area. pp. 135–159. Springer
Netherlands, Dordrecht (2013). https://doi.org/10.1007/978-94-007-5285-6_7. 182.
Zhao, Z., Ham, J. van der, Taal, A., Koning, R., Dumitru, C.,
Wibisono, A., Grosso, P., Laat, C. de: Planning Data Intensive Workflows on
Inter-domain Resources Using the Network Service Interface (NSI). In: 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis. pp.
150–156. IEEE, Salt Lake City, UT (2012). https://doi.org/10.1109/SC.Companion.2012.30. 183.
Zhao, Z., Grosso, P., de Laat, C.: OEIRM: An Open Distributed
Processing Based Interoperability Reference Model for e-Science. In: Park,
J.J., Zomaya, A., Yeo, S.-S., and Sahni, S. (eds.) Network and Parallel
Computing. pp. 437–444. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35606-3_52. 184.
Zhao, Z., Dumitru, C., Grosso, P., de Laat, C.: Network
Resource Control for Data Intensive Applications in Heterogeneous
Infrastructures. In: 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum. pp. 2069–2076. IEEE,
Shanghai, China (2012). https://doi.org/10.1109/IPDPSW.2012.243. 185.
Pavlov,
D., Soeurt, J., Grosso, P., Zhao, Z., Veldt,
K. van der, Zhu, H., Laat, C. de: Towards Energy Efficient Data Intensive
Computing Using IEEE 802.3az. In: 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. pp. 806–810. IEEE, Salt Lake
City, UT (2012). https://doi.org/10.1109/SC.Companion.2012.112. 186.
Demchenko,
Y., Zhao, Z., Grosso, P.,
Wibisono, A., de Laat, C.: Addressing Big Data challenges for Scientific Data
Infrastructure. In: 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings. pp. 614–617. IEEE, Taipei, Taiwan (2012).
https://doi.org/10.1109/CloudCom.2012.6427494. 187.
Zhao, Z., Taal, A., Grosso, P., de Laat, C.: Resource
Discovery in Large Scale Network Infrastructure. In: 2011 IEEE Sixth
International Conference on Networking, Architecture, and Storage. pp.
186–190. IEEE, Dalian, China (2011). https://doi.org/10.1109/NAS.2011.43. 188.
Zhao, Z., Grosso, P., Koning, R., van der Ham, J., de Laat,
C.: An agent based planner for including network QoS in scientific workflows.
In: Proceedings of the International Multiconference on Computer Science and
Information Technology. pp. 231–238. IEEE, Wisla (2010). https://doi.org/10.1109/IMCSIT.2010.5680060,
Best paper award. 189.
Zhao, Z., Grosso, P., Koning, R., van der Ham, J., de Laat,
C.: Network resource selection for data transfer processes in scientific
workflows. In: The 5th Workshop on Workflows in Support of Large-Scale
Science. pp. 1–6. IEEE, New Orleans, LA, USA (2010). https://doi.org/10.1109/WORKS.2010.5671840. 190.
Zhao, Z., Grosso, P., Koning, R., Ham, J., de Laat, C.: An
Architecture Including Network QoS in Scientific Workflows. In: 2010 Ninth
International Conference on Grid and Cloud Computing. pp. 104–109. IEEE,
Nanjing, China (2010). https://doi.org/10.1109/GCC.2010.32. 191.
Zhao, Z., Belloum, A., Bubak, M., Hertzberger, B.: Support
for Cooperative Experiments in VL-e: From Scientific Workflows to Knowledge
Sharing. In: 2008 IEEE Fourth International Conference on eScience. pp.
329–330. IEEE, Indianapolis, IN, USA (2008). https://doi.org/10.1109/eScience.2008.120. 192.
Wibisono,
A., Zhao, Z., Belloum, A., Bubak,
M.: A Framework for Interactive Parameter Sweep Applications. In: Bubak, M.,
van Albada, G.D., Dongarra, J., and Sloot, P.M.A. (eds.) Computational
Science – ICCS 2008. pp. 481–490. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69389-5_55. 193.
Wibisono,
A., Zhao, Z., Belloum, A., Bubak,
M.: A Framework for Interactive Parameter Sweep Applications. In: 2008 Eighth
IEEE International Symposium on Cluster Computing and the Grid (CCGRID). pp.
703–703. IEEE, Lyon, France (2008). https://doi.org/10.1109/CCGRID.2008.111. 194.
Belloum,
A., Zhao, Z., Bubak, M.:
International Workshop on Applications of Workflows in Computational Science
(AWCS 08). In: Bubak, M., van Albada, G.D., Dongarra, J., and Sloot, P.M.A.
(eds.) Computational Science – ICCS 2008. pp. 459–462. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69389-5_52. 195.
Zhao, Z., Belloum, A., De Laat, C., Adriaans, P.,
Hertzberger, B.: Using Jade agent framework to prototype an e-Science
workflow bus. In: Seventh IEEE International Symposium on Cluster Computing
and the Grid (CCGrid ’07). pp. 655–660. IEEE, Rio de Janeiro, Brazil (2007). https://doi.org/10.1109/CCGRID.2007.120. 196.
Zhao, Z., Belloum, A., de Laat, C., Adriaans, P.,
Hertzberger, B.: Distributed execution of aggregated multi domain workflows
using an agent framework. In: 2007 IEEE Congress on Services (Services 2007).
pp. 183–190. IEEE, Salt Lake City, UT, USA (2007). https://doi.org/10.1109/SERVICES.2007.30. 197.
Wibisono,
A., Vasyunin, D., Korkhov, V., Zhao,
Z., Belloum, A., de Laat, C., Adriaans, P., Hertzberger, B.: WS-VLAM: A
GT4 Based Workflow Management System. In: Shi, Y., van Albada, G.D.,
Dongarra, J., and Sloot, P.M.A. (eds.) Computational Science – ICCS 2007. pp.
191–198. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72588-6_34. 198.
Terpstra,
F., Zhao, Z., Mulder, W.,
Adriaans, P.: Towards a Formal Foundation for Aggregating Scientific
Workflows. In: Shi, Y., van Albada, G.D., Dongarra, J., and Sloot, P.M.A.
(eds.) Computational Science – ICCS 2007. pp. 216–219. Springer Berlin
Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72588-6_38. 199.
Zhao, Z., Booms, S., Belloum, A., Laat, C., Hertzberger, B.:
VLE-WFBus: A Scientific Workflow Bus for Multi e-Science Domains. In: 2006
Second IEEE International Conference on e-Science and Grid Computing
(e-Science’06). pp. 11–11. IEEE, Amsterdam, The Netherlands (2006). https://doi.org/10.1109/E-SCIENCE.2006.261095. 200.
Zhao, Z., van Albada, D., Sloot, P.: Rapid Prototyping of
Complex Interactive Simulation Systems. In: 10th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS’05). pp.
366–375. IEEE, Shanghai, China (2005). https://doi.org/10.1109/ICECCS.2005.69. 201.
Zhao, Z., Belloum, A., Yakali, H., Sloot, P., Hertzberger,
B.: Dynamic Work.ow in a Grid Enabled Problem Solving Environment. In: The
Fifth International Conference on Computer and Information Technology
(CIT’05). pp. 339–345. IEEE, Shanghai, China (2005). https://doi.org/10.1109/CIT.2005.101. 202.
Zhao, Z., Belloum, A., Wibisono, A., Terpstra, F., de Boer,
P.T., Sloot, P., Hertzberger, B.: Scientific workflow management: between
generality and applicability. In: Fifth International Conference on Quality
Software (QSIC’05). pp. 357–364. IEEE, Melbourne, Australia (2005). https://doi.org/10.1109/QSIC.2005.56. 203.
Zhao, Z., Belloum, A., Sloot, P., Hertzberger, B.: Agent
technology and scientific workflow management in an e-science environment.
In: 17th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’05). pp. 5 pp. – 23. IEEE, Hong Kong, China (2005). https://doi.org/10.1109/ICTAI.2005.29. 204.
Zhao, Z., Belloum, A., Sloot, P., Hertzberger, B.: Agent
Technology and Generic Workflow Management in an e-Science Environment. In:
Zhuge, H. and Fox, G.C. (eds.) Grid and Cooperative Computing - GCC 2005. pp.
480–485. Springer Berlin Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/11590354_61. 205.
Zhao,
Z. (2004, december 09). An
agent based architecture for constructing Interactive Simulation Systems. UvA Universiteit van
Amsterdam. Promoter/co-promoter: prof. dr. P.M.A. Sloot &
dr. G.D. van Albada. [Link] 206.
Zhao, Z., van Albada, D., Sloot, P.: Agent-Based Flow Control
for HLA Components. SIMULATION. 81, 487–501 (2005). https://doi.org/10.1177/0037549705058060. 207.
Zajac,
K., Tirado-Ramos, A., Zhao, Z.,
Sloot, P., Bubak, M.: Grid Services for HLA-Based Distributed Simulation
Frameworks. In: Fernández Rivera, F., Bubak, M., Gómez Tato, A., and Doallo,
R. (eds.) Grid Computing. pp. 147–154. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24689-3_19. 208.
Zhao, Z., van Albada, G.D., Tirado-Ramos, A., Zajac, K.,
Sloot, P.M.A.: ISS-Studio: A Prototype for a User-Friendly Tool for Designing
Interactive Experiments in Problem Solving Environments. In: Sloot, P.M.A.,
Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., and Gorbachev,
Y.E. (eds.) Computational Science — ICCS 2003. pp. 679–688. Springer Berlin
Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-44860-8_70. 209.
Tirado-Ramos,
A., Zajac, K., Zhao, Z., Sloot,
P.M.A., van Albada, D., Bubak, M.: Experimental Grid Access for Dynamic
Discovery and Data Transfer in Distributed Interactive Simulation Systems.
In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya,
A.Y., and Gorbachev, Y.E. (eds.) Computational Science — ICCS 2003. pp.
284–292. Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-44860-8_29. 210.
Zhao, Z., Belleman, R.G., van Albada, G.D., Sloot, P.M.A.:
AG-IVE: An Agent Based Solution to Constructing Interactive Simulation
Systems. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., and Dongarra, J.J.
(eds.) Computational Science — ICCS 2002. pp. 693–703. Springer Berlin
Heidelberg, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-46043-8_70. 211.
Zhao,
Z., Belleman,
R.G., Albada, G.D. van & Sloot, P.M.A. (2002). Reusability and Efficiency in Constructing
Interactive Simulation Systems. In E.F. Deprettere,
A.S.Z. Belloum, J.W.J. Heijnsdijk & F. van
der Stappen (Eds.), ASCI 2002, Proceedings of the eighth annual
conference of the Advanced School for Computing and Imaging (pp. 268-275).
Delft: ASCI. [Link] 212.
Zhao,
Z., Belleman,
R.G., Albada, G.D. van & Sloot, P.M.A. (2002). Scenario Switches and State Updates in an
Agent-based Solution to Constructing Interactive Simulation Systems. In
Proceedings of the Communication Networks and Distributed
Systems Modeling and Simulation Conference (CNDS 2002) (pp. 3-10).
[Link] 213.
Zhao,
Z., Belleman R.
G., Albada G.D.and Sloot P.M.A. (2001): System integration for interactive
simulation systems using intelligent agents, in
R.L. Lagendijk; J.W.J. Heijnsdijk; A.D. Pimentel and M.H.F.
Wilkinson, editors, Proceedings of the 7th annual conference of the Advanced
School for Computing and Imaging, pp. 399-406. ASCI, May 2001. ISBN
90-803086-6-8. [Link] 214.
Belleman,R.G., Zhao,Z., Albada G.D.
van and Sloot P.M.A (2000) Design considerations for the construction of immersive dynamic
exploration environments, in L.J. van Vliet;
J.W.J. Heijnsdijk; T. Kielmann and P.M.W. Knijnenburg,
editors, ASCI 2000, Proceedings of the sixth annual conference of the
Advanced School for Computing and Imaging, pp. 195-201. ASCI, Delft, June
2000. ISBN 90-803086-5-x. [Link] Peer-reviewed abstracts and
posters 215.
Li,
N., Zhu, P., Gabriel Pelouze, G., Koulouzis, S., Zhao, Z., Zhao, Z.:
Research Notebook Retrieval with Explainable Query Reformulation. oral
(2024). https://doi.org/10.5194/egusphere-egu24-19358
216.
Bundke,
U., Bailo, D., Carval, T., Cervone, L., De Nart, D., Dema, C., Ferrari, T.,
Petzold, A., Thijsse, P., Vermeulen, A., Zhao, Z.: ENVRI-Hub-NEXT, the
open-access platform of the environmental sciences community in Europe.
display (2024). https://doi.org/10.5194/egusphere-egu24-8465 217.
Pelouze,
G., Koulouzis, S., Zhao, Z.: Notebook-as-a-VRE (NaaVRE): From private
notebooks to a collaborative cloud virtual research environment. oral (2024).
https://doi.org/10.5194/egusphere-egu24-17978
218.
Petzold,
A., Bundke, U., Hienola, A., Laj, P., Lund Myhre, C., Vermeulen, A., Adamaki,
A., Kutsch, W., Thouret, V., Boulanger, D., Fiebig, M., Stocker, M., Zhao,
Z., and Asmi, A. (2023): Opinion: New directions in atmospheric research
offered by research infrastructures combined with open and data-intensive
science, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1423 219.
Shi,
Y., Koulouzis, S., Bianchi, R., Timmermans, J., Kissling, W. D., and Zhao,
Z. (2023): Generating geospatial data products of ecosystem
structure from LiDAR using Notebook-as-a-VRE (NaaVRE), EGU General Assembly
2023, Vienna, Austria, 24–28 Apr 2023, EGU23-11716, https://doi.org/10.5194/egusphere-egu23-11716,
2023. 220.
Petzold,
A., Bundke, U., Schleiermacher, C., Gomes, A. R., Seemeyer, K., Adamaki, A.,
Vermeulen, A., Zhao, Z., Boulanger, D., Carval, T., and Hienola, A.
(2023): The ENVRI-Hub as a service for accelerating FAIRification of the
Environment Domain Research Infrastructures, EGU General Assembly 2023,
Vienna, Austria, 24–28 Apr 2023, EGU23-7708, https://doi.org/10.5194/egusphere-egu23-7708,
2023. 221.
Petzold,
A., Asmi, A., Gomes, R., Seemeyer, K., Adamaki, A., Vermeulen, A., Bailo, D.,
Jeffery, K., Glaves, H., Zhao, Z., Stocker, M., Hellstrom, M(2021).:
Creating ENVRI-hub, the Open-Access Platform of the Environmental Sciences
Community in Europe. 2021, IN53A-04. [2021AGUFMIN53A..04P] 222.
Alex
Boyko, Siamak Farshidi, Zhiming Zhao, State-of-the-art instance
matching methods for knowledge graphs, The Sixteenth International Workshop
on Ontology Matching (OM-2021), in the context of 20th International Semantic
Web Conference ISWC-2021, online [OA] 223.
Koulouzis,
S., Shi, Y., Wan, Y., Bianchi, R., Kissling, D., Zhao, Z.: Enabling
LiDAR data processing as a service in a Jupyter environment (2021). EGU
General Assembly 2021, online, 19–30 Apr 2021, EGU21-8294, https://doi.org/10.5194/egusphere-egu21-8294 224.
Petzold,
A., Asmi, A., Seemeyer, K., Adamaki, A., Vermeulen, A., Bailo, D., Jeffery,
K., Glaves, H., Zhao, Z., Stocker, M., Hellström, M.: Advancing the
FAIRness and Openness of Earth system science in Europe. pico (2021). https://doi.org/10.5194/egusphere-egu21-8052 225.
Liao,
X., Goldfarb, D., Magagna, B., Stocker, M., Thijsse, P., Schaap, D., Zhao,
Z.: ENVRI knowledge base: A community knowledge base for research,
innovation and society. oral (2020). https://doi.org/10.5194/egusphere-egu2020-20708 226.
Zhao, Z., Martin, P., Koulouzis, S.:
(2019) Optimizing
environmental data services on federated Cloud and e-Infrastructures, EGU,
April 2019 [2019EGUGA..21.3683Z] 227.
Koulouzis,
S., Carval, T., Martin, P., Grenier, B., Chen, Y., Heikkinen, J., Zhao,
Z.: Dynamic Optimization for Time-critical Data Services: A Case Study in
Euro-Argo Research Infrastructure.
20th EGU General Assembly, EGU2018, Proceedings from the conference
held 4-13 April, 2018 in Vienna, Austria, p.16012. [2018EGUGA..2016012K] 228.
Nieva
de la Hidalga, A., Hardisty, A.R., Magagna, B., Martin, P.W., Zhao, Z.: Use
of the ENVRI Reference Model to Support the Design of Environmental Research
Infrastructures. 18552 (2018). [2018EGUGA..2018552N] 229.
Kutsch,
W. L.; Zhao, Z.; Hardisty, A.; Hellström, M.; Chin,
Y.; Magagna, B.; Asmi, A.; Papale, D.; Pfeil, B.;
Atkinson, M. (2017) Data interoperability between European
Environmental Research Infrastructures and their contribution to global data
networks, AGU 2018, American Geophysical Union, Fall Meeting 2017, abstract
#IN44B-01. [2017AGUFMIN44B..01K] Technical report and
newsletters 230. Zhao, Z., Martin, P. Jeffery K., (2017) VRE in the
Data for Science Approach to Common Challenges in ENVRIPLUS, ERCIM, Newsletter, April 2017 231. Ghijsen, M., Ham, J. van der, Grosso,
P., Dumitru, C., Zhu, H., Zhao, Z. & Laat, C.
de (2013). A semantic-web approach for modeling computing
infrastructures. (SNE technical report 2013-01).
Amsterdam: Universiteit van Amsterdam, System and Network
Engineering. [Full text] 232. Hertzberger, L.O., Belleman, R.G., Jansen,
M.G., Zhao, Z., Hooft, P. van, Belloum,
A.S.Z., Mirzadeh, N., Yakali, H.H., Liere, R.
van, Nuallain, B.S., Verstoep, K., Groep, D.L.
& Bouwhuis, M.C. (2005). Recommendation to VLeIT:
Scientific workflow management systems for the PoC r1. (Internal
report). Amsterdam: Informatics Institute. Supervised PhD thesis 233. Hongyun
Liu (2024) Robust Resource Management for Time-Critical Tasks
in the Cloud-Edge Continuum, (ISBN: 979-88-9379-233-1) 234. Ruyue
Xin (2023) Towards effective performance diagnosis for distributed
applications, (ISBN: 978-94-6473-267-2) 235. Zeshun
Shi (2022) Enhancing Service-Level Agreements using Decentralized Auctions
and Witnesses, [ISBN: 978-94-6421-916-6] 236. Yang
Hu (2019) Resource Scheduling for Quality-Critical Applications on Cloud
Infrastructure, University of Amsterdam, [ISBN: 978-94-028-1713-3]. 237. Huan
Zhou (2019) Seamless Infrastructure Programming and Control for
Quality-critical Cloud Applications, [ISBN: 978-94-028-1727-0] In Chinese 238. Zhao, Z., Liao, X., Wang, X., Ruan, C.,
Zhu, Y., Feng, D. (2019), An
Reference Model approach for developing agriculture big data infrastructures,
Journal of East China Normal University (Natural Sc 2019 Vol.2019 (2): 77-96, [10.3969/j.issn.1000-5641.2019.02.009] 239. Demchenko, Y., Zhao, Z., Grosso,
P., Wibisono, A., de Laat, C., (2013) 科研信息化基础 设施的大数据挑战 (Big Data Challenges for e-Science
Infrastructure) China
Science and Technology Resources Review, Vol.45 No.1 30-35,40 Jan. 2013. ISSN
1674-1544 [10.3772/j.issn.1674-1544.2013.01.006] |
|
|
|
|
|
|
||
|
|
|
||
|
|
|
Update date: January 21, 2025