[go: up one dir, main page]
More Web Proxy on the site http://driver.im/Prijeđi na sadržaj

Vektorsko polje

Izvor: Wikipedija
Vektorsko polje oblika f(x,y)=(−y, x)

U matematici i fizici vektorsko polje je polje, koje svakoj točki lokalno Euklidskog prostora pridružuje vektorsku veličinu.

Neki od diferencijalnih operatori primjenjivih na vektorsko polje su divergencija i rotacija.

Formalna definicija

[uredi | uredi kod]

Neka je i neka označava skup svih radij-vektora u koordinatnom sustavu , tj.

.

Kažemo da je funkcija skalarne varijable (kraće: vektorska funkcija ili vektorsko polje) svaka funkcija

Drugim riječima, vektorsko polje je prostorna funkcija koja svakoj točki prostora pridružuje vektor.

Potencijalno vektorsko polje
Solenoidno vektorsko polje
Laplaceovo vektorsko polje
Opće vektorsko polje

Transformacije sustava

[uredi | uredi kod]

Neka je i vektorsko polje u euklidskim koordinatama. Ukoliko je neki drugi koordinatni sustav na S, tada je izraz za to vektorsko polje u sustavu :

Napomene

[uredi | uredi kod]

Za V se kaže da je Ck vektorsko polje, ako je ono k puta diferencijabilno.

Jako je važno razlikovati vektorsko i skalarno polje! Što vrijedi za vektore i skalare, isto vrijedi i ovdje: glavna i bitna razlika je u koordinatnim transformacijama: skalar sam po sebi jest koordinata, dok je vektor opisan koordinatama, ali sam po sebi nije kolekcija koordinata. Tako i skalarno polje svakoj točki prostora pridružuje koordinate, a vektorsko vektore.

Primjene

[uredi | uredi kod]

Vektorska polja se najviše primjenjuju u fizici, npr.

  • Brzinu vjetra možemo zamisliti kao vektorsko polje u (!), gdje je svaka točka opisana sa sedam koordinata: (polje je zavisno o vremenu!).
  • Brzina protjecanja fluida kroz cijev.
  • Opis magnetskog djelovanja.
  • Opis električnog djelovanja.
  • Gravitacija.

Podjela

[uredi | uredi kod]

Prema divergenciji i rotaciji, vektorska polja dijelimo na:

  • Potencijalno ili bezvrtložno:
  • Solenoidno ili bezizvorno:
  • Laplaceovo:
  • Polje općeg oblika ili složeno polje:

Povezani pojmovi

[uredi | uredi kod]

Vanjske veze

[uredi | uredi kod]