Consistency trajectory models: Learning probability flow ode trajectory of diffusion
arXiv preprint arXiv:2310.02279, 2023•arxiv.org
Consistency Models (CM)(Song et al., 2023) accelerate score-based diffusion model
sampling at the cost of sample quality but lack a natural way to trade-off quality for speed. To
address this limitation, we propose Consistency Trajectory Model (CTM), a generalization
encompassing CM and score-based models as special cases. CTM trains a single neural
network that can--in a single forward pass--output scores (ie, gradients of log-density) and
enables unrestricted traversal between any initial and final time along the Probability Flow …
sampling at the cost of sample quality but lack a natural way to trade-off quality for speed. To
address this limitation, we propose Consistency Trajectory Model (CTM), a generalization
encompassing CM and score-based models as special cases. CTM trains a single neural
network that can--in a single forward pass--output scores (ie, gradients of log-density) and
enables unrestricted traversal between any initial and final time along the Probability Flow …
Consistency Models (CM) (Song et al., 2023) accelerate score-based diffusion model sampling at the cost of sample quality but lack a natural way to trade-off quality for speed. To address this limitation, we propose Consistency Trajectory Model (CTM), a generalization encompassing CM and score-based models as special cases. CTM trains a single neural network that can -- in a single forward pass -- output scores (i.e., gradients of log-density) and enables unrestricted traversal between any initial and final time along the Probability Flow Ordinary Differential Equation (ODE) in a diffusion process. CTM enables the efficient combination of adversarial training and denoising score matching loss to enhance performance and achieves new state-of-the-art FIDs for single-step diffusion model sampling on CIFAR-10 (FID 1.73) and ImageNet at 64X64 resolution (FID 2.06). CTM also enables a new family of sampling schemes, both deterministic and stochastic, involving long jumps along the ODE solution trajectories. It consistently improves sample quality as computational budgets increase, avoiding the degradation seen in CM. Furthermore, CTM's access to the score accommodates all diffusion model inference techniques, including exact likelihood computation.
arxiv.org